定積分 $\int_1^2 (x^3 - 4x^2 + 4x - (-x+2))dx$ を計算する。解析学定積分積分多項式2025/7/111. 問題の内容定積分 ∫12(x3−4x2+4x−(−x+2))dx\int_1^2 (x^3 - 4x^2 + 4x - (-x+2))dx∫12(x3−4x2+4x−(−x+2))dx を計算する。2. 解き方の手順まず、積分の中身を整理します。x3−4x2+4x−(−x+2)=x3−4x2+4x+x−2=x3−4x2+5x−2x^3 - 4x^2 + 4x - (-x + 2) = x^3 - 4x^2 + 4x + x - 2 = x^3 - 4x^2 + 5x - 2x3−4x2+4x−(−x+2)=x3−4x2+4x+x−2=x3−4x2+5x−2次に、不定積分を計算します。∫(x3−4x2+5x−2)dx=14x4−43x3+52x2−2x+C\int (x^3 - 4x^2 + 5x - 2) dx = \frac{1}{4}x^4 - \frac{4}{3}x^3 + \frac{5}{2}x^2 - 2x + C∫(x3−4x2+5x−2)dx=41x4−34x3+25x2−2x+C最後に、定積分を計算します。∫12(x3−4x2+5x−2)dx=[14x4−43x3+52x2−2x]12\int_1^2 (x^3 - 4x^2 + 5x - 2) dx = \left[ \frac{1}{4}x^4 - \frac{4}{3}x^3 + \frac{5}{2}x^2 - 2x \right]_1^2∫12(x3−4x2+5x−2)dx=[41x4−34x3+25x2−2x]12=(14(24)−43(23)+52(22)−2(2))−(14(14)−43(13)+52(12)−2(1))= \left( \frac{1}{4}(2^4) - \frac{4}{3}(2^3) + \frac{5}{2}(2^2) - 2(2) \right) - \left( \frac{1}{4}(1^4) - \frac{4}{3}(1^3) + \frac{5}{2}(1^2) - 2(1) \right)=(41(24)−34(23)+25(22)−2(2))−(41(14)−34(13)+25(12)−2(1))=(164−323+202−4)−(14−43+52−2)= \left( \frac{16}{4} - \frac{32}{3} + \frac{20}{2} - 4 \right) - \left( \frac{1}{4} - \frac{4}{3} + \frac{5}{2} - 2 \right)=(416−332+220−4)−(41−34+25−2)=(4−323+10−4)−(14−43+52−2)= \left( 4 - \frac{32}{3} + 10 - 4 \right) - \left( \frac{1}{4} - \frac{4}{3} + \frac{5}{2} - 2 \right)=(4−332+10−4)−(41−34+25−2)=10−323−14+43−52+2= 10 - \frac{32}{3} - \frac{1}{4} + \frac{4}{3} - \frac{5}{2} + 2=10−332−41+34−25+2=12−283−14−52= 12 - \frac{28}{3} - \frac{1}{4} - \frac{5}{2}=12−328−41−25=12−283−14−104= 12 - \frac{28}{3} - \frac{1}{4} - \frac{10}{4}=12−328−41−410=12−283−114= 12 - \frac{28}{3} - \frac{11}{4}=12−328−411=14412−11212−3312= \frac{144}{12} - \frac{112}{12} - \frac{33}{12}=12144−12112−1233=144−112−3312= \frac{144 - 112 - 33}{12}=12144−112−33=−112= \frac{-1}{12}=12−13. 最終的な答え−112-\frac{1}{12}−121