二次方程式 $3x^2 - 9x + 5 = 0$ を解く問題です。

代数学二次方程式解の公式根号
2025/7/12

1. 問題の内容

二次方程式 3x29x+5=03x^2 - 9x + 5 = 0 を解く問題です。

2. 解き方の手順

この二次方程式は因数分解が難しいため、解の公式を用いて解きます。
一般に、二次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、解の公式
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
で与えられます。今回の問題では、a=3a = 3, b=9b = -9, c=5c = 5 であるので、これらを解の公式に代入します。
x=(9)±(9)243523x = \frac{-(-9) \pm \sqrt{(-9)^2 - 4 \cdot 3 \cdot 5}}{2 \cdot 3}
x=9±81606x = \frac{9 \pm \sqrt{81 - 60}}{6}
x=9±216x = \frac{9 \pm \sqrt{21}}{6}

3. 最終的な答え

したがって、二次方程式の解は x=9+216x = \frac{9 + \sqrt{21}}{6} および x=9216x = \frac{9 - \sqrt{21}}{6} です。
x=9+216,9216x = \frac{9 + \sqrt{21}}{6}, \frac{9 - \sqrt{21}}{6}

「代数学」の関連問題

与えられたベクトルの組が線形独立か線形従属かを判定し、その理由を述べる。 (i) $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix}...

線形代数線形独立ベクトル連立方程式
2025/7/12

複素数 $z_n = (\frac{\sqrt{3}-1}{\sqrt{2}} + \frac{\sqrt{3}+1}{\sqrt{2}}i)^n$ (ただし、$n=1,2,3,...$、 $i$は虚...

複素数複素平面絶対値極形式ド・モアブルの定理
2025/7/12

(1) 複素数 $z$ が $|z|=1$ を満たすとき、これは複素数平面上で原点中心、半径1の円を表します。また、$|z-1|=|z+1|$ を満たすとき、これは点1と点-1からの距離が等しい点の集...

複素数複素数平面虚軸二次方程式無限級数部分分数分解
2025/7/12

与えられた4x4行列の行列式を計算する問題です。行列は以下の通りです。 $\begin{vmatrix} a & a & b & b \\ a & b & a & b \\ a & b & b & a...

行列式線形代数行列の計算
2025/7/12

複素数 $z_n = \left( \frac{\sqrt{3}-1}{\sqrt{2}} + \frac{\sqrt{3}+1}{\sqrt{2}}i \right)^n$ (n=1, 2, 3, ...

複素数複素数の絶対値複素数の偏角ド・モアブルの定理
2025/7/12

行列 $A = \begin{bmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{bmatrix}$ の行列式を因数分解する問題です。

行列式行列因数分解
2025/7/12

(11) 2次関数 $y = -x^2 - 6x - 2$ の最大値を求めます。 (12) 2次不等式 $4x^2 + 8x - 5 \ge 0$ を解きます。

二次関数最大値二次不等式平方完成因数分解
2025/7/12

2次方程式 $3x^2 - 6x + 1 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、以下の値を求めます。 (1) $\alpha^2 + \beta^2$ (2) $\al...

二次方程式解と係数の関係式の計算解の対称式
2025/7/12

与えられた2次不等式 $4x^2 - 12x + 9 \leq 0$ を解きます。

二次不等式因数分解完全平方式不等式
2025/7/12

放物線 $y = x^2 - 4x + 6$ の頂点の座標を求める問題です。

二次関数放物線頂点平方完成
2025/7/12