## 解答代数学数列級数シグマ等比数列2025/7/12## 解答### (1) 問題の内容数列の和 S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1 を求める。### (1) 解き方の手順S=∑k=1n(2k−1)2k−1S = \sum_{k=1}^{n} (2k-1)2^{k-1}S=∑k=1n(2k−1)2k−1 と表せる。2S=∑k=1n(2k−1)2k=∑k=2n+1(2k−3)2k−12S = \sum_{k=1}^{n} (2k-1)2^k = \sum_{k=2}^{n+1} (2k-3)2^{k-1}2S=∑k=1n(2k−1)2k=∑k=2n+1(2k−3)2k−1S−2S=∑k=1n(2k−1)2k−1−∑k=2n+1(2k−3)2k−1S - 2S = \sum_{k=1}^{n} (2k-1)2^{k-1} - \sum_{k=2}^{n+1} (2k-3)2^{k-1}S−2S=∑k=1n(2k−1)2k−1−∑k=2n+1(2k−3)2k−1−S=1+∑k=2n[(2k−1)−(2k−3)]2k−1−(2n−1)2n-S = 1 + \sum_{k=2}^{n} \left[ (2k-1) - (2k-3) \right] 2^{k-1} - (2n-1)2^n−S=1+∑k=2n[(2k−1)−(2k−3)]2k−1−(2n−1)2n−S=1+∑k=2n2⋅2k−1−(2n−1)2n-S = 1 + \sum_{k=2}^{n} 2 \cdot 2^{k-1} - (2n-1)2^n−S=1+∑k=2n2⋅2k−1−(2n−1)2n−S=1+∑k=2n2k−(2n−1)2n-S = 1 + \sum_{k=2}^{n} 2^k - (2n-1)2^n−S=1+∑k=2n2k−(2n−1)2n−S=1+∑k=1n2k−2−(2n−1)2n-S = 1 + \sum_{k=1}^{n} 2^k - 2 - (2n-1)2^n−S=1+∑k=1n2k−2−(2n−1)2n−S=2(2n−1)2−1−1−(2n−1)2n-S = \frac{2(2^n-1)}{2-1} - 1 - (2n-1)2^n−S=2−12(2n−1)−1−(2n−1)2n−S=2n+1−2−1−(2n−1)2n-S = 2^{n+1} - 2 - 1 - (2n-1)2^n−S=2n+1−2−1−(2n−1)2n−S=2n+1−3−(2n−1)2n-S = 2^{n+1} - 3 - (2n-1)2^n−S=2n+1−3−(2n−1)2n−S=2n+1−3−2n2n+2n-S = 2^{n+1} - 3 - 2n2^n + 2^n−S=2n+1−3−2n2n+2n−S=2n+1+2n−2n2n−3-S = 2^{n+1} + 2^n - 2n2^n - 3−S=2n+1+2n−2n2n−3−S=3⋅2n−2n2n−3-S = 3 \cdot 2^n - 2n2^n - 3−S=3⋅2n−2n2n−3S=(2n−3)2n+3S = (2n-3)2^n + 3S=(2n−3)2n+3### (1) 最終的な答えS=(2n−3)2n+3S = (2n-3)2^n + 3S=(2n−3)2n+3### (2) 問題の内容数列の和 S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−1 を求める。### (2) 解き方の手順S=∑k=1n(3k−2)xk−1S = \sum_{k=1}^n (3k-2)x^{k-1}S=∑k=1n(3k−2)xk−1xS=∑k=1n(3k−2)xk=∑k=2n+1(3k−5)xk−1xS = \sum_{k=1}^n (3k-2)x^k = \sum_{k=2}^{n+1} (3k-5)x^{k-1}xS=∑k=1n(3k−2)xk=∑k=2n+1(3k−5)xk−1S−xS=∑k=1n(3k−2)xk−1−∑k=2n+1(3k−5)xk−1S - xS = \sum_{k=1}^n (3k-2)x^{k-1} - \sum_{k=2}^{n+1} (3k-5)x^{k-1}S−xS=∑k=1n(3k−2)xk−1−∑k=2n+1(3k−5)xk−1(1−x)S=1+∑k=2n[(3k−2)−(3k−5)]xk−1−(3n−2)xn(1-x)S = 1 + \sum_{k=2}^n \left[ (3k-2) - (3k-5) \right] x^{k-1} - (3n-2)x^n(1−x)S=1+∑k=2n[(3k−2)−(3k−5)]xk−1−(3n−2)xn(1−x)S=1+∑k=2n3xk−1−(3n−2)xn(1-x)S = 1 + \sum_{k=2}^n 3x^{k-1} - (3n-2)x^n(1−x)S=1+∑k=2n3xk−1−(3n−2)xn(1−x)S=1+3∑k=1n−1xk−(3n−2)xn(1-x)S = 1 + 3\sum_{k=1}^{n-1} x^k - (3n-2)x^n(1−x)S=1+3∑k=1n−1xk−(3n−2)xn(1−x)S=1+3x(1−xn−1)1−x−(3n−2)xn(1-x)S = 1 + 3\frac{x(1-x^{n-1})}{1-x} - (3n-2)x^n(1−x)S=1+31−xx(1−xn−1)−(3n−2)xn(1−x)S=(1−x)+3x(1−xn−1)−(3n−2)xn(1−x)1−x(1-x)S = \frac{(1-x) + 3x(1-x^{n-1}) - (3n-2)x^n(1-x)}{1-x}(1−x)S=1−x(1−x)+3x(1−xn−1)−(3n−2)xn(1−x)(1−x)S=1−x+3x−3xn−(3n−2)xn+(3n−2)xn+11−x(1-x)S = \frac{1-x + 3x - 3x^n - (3n-2)x^n + (3n-2)x^{n+1}}{1-x}(1−x)S=1−x1−x+3x−3xn−(3n−2)xn+(3n−2)xn+1(1−x)S=1+2x−3xn−3nxn+2xn+3nxn+1−2xn+11−x(1-x)S = \frac{1 + 2x - 3x^n - 3nx^n + 2x^n + 3nx^{n+1} - 2x^{n+1}}{1-x}(1−x)S=1−x1+2x−3xn−3nxn+2xn+3nxn+1−2xn+1(1−x)S=1+2x−xn−3nxn+3nxn+1−2xn+11−x(1-x)S = \frac{1 + 2x - x^n - 3nx^n + 3nx^{n+1} - 2x^{n+1}}{1-x}(1−x)S=1−x1+2x−xn−3nxn+3nxn+1−2xn+1S=1+2x−xn−3nxn+3nxn+1−2xn+1(1−x)2S = \frac{1 + 2x - x^n - 3nx^n + 3nx^{n+1} - 2x^{n+1}}{(1-x)^2}S=(1−x)21+2x−xn−3nxn+3nxn+1−2xn+1### (2) 最終的な答えS=1+2x−xn−3nxn+3nxn+1−2xn+1(1−x)2S = \frac{1 + 2x - x^n - 3nx^n + 3nx^{n+1} - 2x^{n+1}}{(1-x)^2}S=(1−x)21+2x−xn−3nxn+3nxn+1−2xn+1### (3) 問題の内容数列の和 S=2n−1+2⋅2n−2+3⋅2n−3+⋯+(n−1)⋅2+nS = 2^{n-1} + 2 \cdot 2^{n-2} + 3 \cdot 2^{n-3} + \dots + (n-1) \cdot 2 + nS=2n−1+2⋅2n−2+3⋅2n−3+⋯+(n−1)⋅2+n を求める。### (3) 解き方の手順S=∑k=1nk⋅2n−kS = \sum_{k=1}^n k \cdot 2^{n-k}S=∑k=1nk⋅2n−kS=2n−1+2⋅2n−2+3⋅2n−3+⋯+(n−1)⋅21+n⋅20S = 2^{n-1} + 2 \cdot 2^{n-2} + 3 \cdot 2^{n-3} + \dots + (n-1) \cdot 2^1 + n \cdot 2^0S=2n−1+2⋅2n−2+3⋅2n−3+⋯+(n−1)⋅21+n⋅202S=2n+2⋅2n−1+3⋅2n−2+⋯+(n−1)⋅22+n⋅212S = 2^n + 2 \cdot 2^{n-1} + 3 \cdot 2^{n-2} + \dots + (n-1) \cdot 2^2 + n \cdot 2^12S=2n+2⋅2n−1+3⋅2n−2+⋯+(n−1)⋅22+n⋅212S−S=2n+(2−1)2n−1+(3−2)2n−2+⋯+(n−(n−1))21−n2S - S = 2^n + (2-1)2^{n-1} + (3-2)2^{n-2} + \dots + (n-(n-1))2^1 - n2S−S=2n+(2−1)2n−1+(3−2)2n−2+⋯+(n−(n−1))21−nS=2n+2n−1+2n−2+⋯+21−nS = 2^n + 2^{n-1} + 2^{n-2} + \dots + 2^1 - nS=2n+2n−1+2n−2+⋯+21−nS=∑k=1n2k−nS = \sum_{k=1}^n 2^k - nS=∑k=1n2k−nS=2(2n−1)2−1−nS = \frac{2(2^n-1)}{2-1} - nS=2−12(2n−1)−nS=2n+1−2−nS = 2^{n+1} - 2 - nS=2n+1−2−n### (3) 最終的な答えS=2n+1−n−2S = 2^{n+1} - n - 2S=2n+1−n−2