与えられた2つの命題の真偽を調べ、偽の場合は反例を挙げる。 (1) $m, n$ がともに素数ならば $m + n$ は偶数である。 (2) $2x - 2 < 0$ ならば $-1 < x < 1$ である。

代数学命題真偽反例不等式素数
2025/7/12

1. 問題の内容

与えられた2つの命題の真偽を調べ、偽の場合は反例を挙げる。
(1) m,nm, n がともに素数ならば m+nm + n は偶数である。
(2) 2x2<02x - 2 < 0 ならば 1<x<1-1 < x < 1 である。

2. 解き方の手順

(1) m,nm, n がともに素数ならば m+nm + n は偶数である。
素数は、2, 3, 5, 7, 11, 13, ... などです。
m=2m = 2, n=3n = 3 とすると、m+n=2+3=5m + n = 2 + 3 = 5 となり、奇数になるので、この命題は偽です。
反例:m=2m = 2, n=3n = 3
(2) 2x2<02x - 2 < 0 ならば 1<x<1-1 < x < 1 である。
2x2<02x - 2 < 0 を解きます。
2x<22x < 2
x<1x < 1
したがって、x<1x < 1 ならば 1<x<1-1 < x < 1 は必ずしも真ではありません。例えば、x=2x = -2 のとき、x<1x < 1 ですが、1<x<1-1 < x < 1 は成り立ちません。
反例:x=2x = -2

3. 最終的な答え

(1) 偽。反例:m=2m = 2, n=3n = 3
(2) 偽。反例:x=2x = -2

「代数学」の関連問題

複素数の等式 $\frac{x+yi}{2+3i} = \frac{5}{13} - \frac{1}{13}i$ を満たす実数 $x$ と $y$ を求めます。

複素数複素数の計算等式
2025/7/12

複素数 $x+yi$ の2乗が $7+24i$ に等しいとき、$x$と$y$の値を求めます。つまり、$(x+yi)^2 = 7+24i$ を満たす実数 $x, y$ を求めます。

複素数二次方程式解の公式
2025/7/12

線形代数の問題で、行列の計算、行列のべき乗、行列を用いた方程式を解く問題です。具体的には以下の問題があります。 (1) $\begin{pmatrix} \frac{1}{\sqrt{2}} & -\...

行列行列の計算線形代数連立方程式
2025/7/12

問題は2つあります。 (2) は、2つの行列の積を計算する問題です。 (3) は、(2)で求めた行列の6乗を計算する問題です。

行列行列の積行列の累乗回転行列
2025/7/12

与えられた複素数の分数を計算します。問題は $ \frac{4}{(1+i)^2} $ を計算することです。ここで、$i$ は虚数単位を表します。

複素数虚数単位複素数の計算分数の計算
2025/7/12

したがって、$x + 1$ は与えられた式の因数であることがわかります。

因数分解3次式因数定理多項式の割り算
2025/7/12

画像には2つの大問があり、それぞれ6つの計算問題があります。1つ目の大問は多項式の足し算、2つ目の大問は多項式の引き算です。

多項式の計算加法減法同類項
2025/7/12

$a = \frac{4}{3\sqrt{2} - \sqrt{10}}$ が与えられたとき、以下の問題を解きます。 (1) $a$ の分母を有理化し、簡単にします。 (2) $a + \frac{2...

有理化式の計算平方根分数式
2025/7/12

$a$ は定数とする。関数 $y = 2x^2 - 4ax - a$ ($0 \le x \le 2$) の最大値を求めよ。

二次関数最大値場合分け平方完成
2025/7/12

複素数の方程式 $(2+3i)(x+yi)=1$ を満たす実数 $x$ と $y$ の値を求める問題です。

複素数方程式連立方程式
2025/7/12