定積分 $I = \int_{0}^{1} \log(1+x^2) \, dx$ を計算します。解析学定積分部分積分対数関数arctan2025/7/131. 問題の内容定積分 I=∫01log(1+x2) dxI = \int_{0}^{1} \log(1+x^2) \, dxI=∫01log(1+x2)dx を計算します。2. 解き方の手順部分積分を使って計算します。u=log(1+x2)u = \log(1+x^2)u=log(1+x2)、dv=dxdv = dxdv=dx とすると、du=2x1+x2dxdu = \frac{2x}{1+x^2} dxdu=1+x22xdx、v=xv = xv=x となります。したがって、I=∫01log(1+x2) dx=[xlog(1+x2)]01−∫012x21+x2 dxI = \int_{0}^{1} \log(1+x^2) \, dx = [x\log(1+x^2)]_{0}^{1} - \int_{0}^{1} \frac{2x^2}{1+x^2} \, dxI=∫01log(1+x2)dx=[xlog(1+x2)]01−∫011+x22x2dx=log(2)−2∫01x21+x2 dx= \log(2) - 2 \int_{0}^{1} \frac{x^2}{1+x^2} \, dx=log(2)−2∫011+x2x2dx=log(2)−2∫011+x2−11+x2 dx= \log(2) - 2 \int_{0}^{1} \frac{1+x^2-1}{1+x^2} \, dx=log(2)−2∫011+x21+x2−1dx=log(2)−2∫01(1−11+x2) dx= \log(2) - 2 \int_{0}^{1} \left( 1 - \frac{1}{1+x^2} \right) \, dx=log(2)−2∫01(1−1+x21)dx=log(2)−2[x−arctan(x)]01= \log(2) - 2 \left[ x - \arctan(x) \right]_{0}^{1}=log(2)−2[x−arctan(x)]01=log(2)−2[(1−arctan(1))−(0−arctan(0))]= \log(2) - 2 \left[ (1 - \arctan(1)) - (0 - \arctan(0)) \right]=log(2)−2[(1−arctan(1))−(0−arctan(0))]=log(2)−2(1−π4)= \log(2) - 2 \left( 1 - \frac{\pi}{4} \right)=log(2)−2(1−4π)=log(2)−2+π2= \log(2) - 2 + \frac{\pi}{2}=log(2)−2+2π3. 最終的な答えlog(2)−2+π2\log(2) - 2 + \frac{\pi}{2}log(2)−2+2π