与えられた数列 $ \{a_n\} $, $ \{b_n\} $, $ \{c_n\} $, $ \{d_n\} $, $ \{t_n\} $, $ \{u_n\} $ に対して、以下の値をそれぞれ求めます。ただし、$ \{u_n\} $ は第$ m $群が $ m^3 $ 個の項を含むように区分されています。 (1) $ \sum_{k=1}^n a_k b_k $ (2) $ \sum_{k=1}^n \frac{1}{a_k b_k} $ (3) $ \sum_{k=1}^n t_k $ (4) $ \sum_{k=1}^n a_k d_k $ (5) $ \sum_{k=1}^n \frac{1}{a_k b_k c_k} $ (6) $ \sum_{k=1}^n k^2 d_k $ (7) $ \frac{\sum_{k=1}^{2025} u_k}{\sum_{k=1}^{9} k^3} $

解析学数列級数群数列
2025/7/13

1. 問題の内容

与えられた数列 {an} \{a_n\} , {bn} \{b_n\} , {cn} \{c_n\} , {dn} \{d_n\} , {tn} \{t_n\} , {un} \{u_n\} に対して、以下の値をそれぞれ求めます。ただし、{un} \{u_n\} は第m m 群が m3 m^3 個の項を含むように区分されています。
(1) k=1nakbk \sum_{k=1}^n a_k b_k
(2) k=1n1akbk \sum_{k=1}^n \frac{1}{a_k b_k}
(3) k=1ntk \sum_{k=1}^n t_k
(4) k=1nakdk \sum_{k=1}^n a_k d_k
(5) k=1n1akbkck \sum_{k=1}^n \frac{1}{a_k b_k c_k}
(6) k=1nk2dk \sum_{k=1}^n k^2 d_k
(7) k=12025ukk=19k3 \frac{\sum_{k=1}^{2025} u_k}{\sum_{k=1}^{9} k^3}

2. 解き方の手順

まず、各数列の一般項を求めます。
{an} \{a_n\} : 等差数列、初項1、公差2。よって、ak=1+(k1)2=2k1 a_k = 1 + (k-1)2 = 2k - 1
{bn} \{b_n\} : 等差数列、初項3、公差2。よって、bk=3+(k1)2=2k+1 b_k = 3 + (k-1)2 = 2k + 1
{cn} \{c_n\} : 等差数列、初項5、公差2。よって、ck=5+(k1)2=2k+3 c_k = 5 + (k-1)2 = 2k + 3
{dn} \{d_n\} : 等比数列、初項2、公比2。よって、dk=22k1=2k d_k = 2 \cdot 2^{k-1} = 2^k
{tn} \{t_n\} : t1=2,t2=6,t3=14,t4=26,t5=42,t6=62,...t_1 = 2, t_2 = 6, t_3 = 14, t_4 = 26, t_5 = 42, t_6 = 62, ...
階差数列を考えると、4,8,12,16,20,...4, 8, 12, 16, 20, ...となり、これは初項4、公差4の等差数列である。
よって、階差数列の一般項は 4k 4k と表せる。
したがって、tk=2+i=1k14i=2+4(k1)k2=2+2(k2k)=2k22k+2 t_k = 2 + \sum_{i=1}^{k-1} 4i = 2 + 4 \cdot \frac{(k-1)k}{2} = 2 + 2(k^2 - k) = 2k^2 - 2k + 2
{un} \{u_n\} : 群数列であり、第m m 群は m3 m^3 個の項を含む。各群の項は等差数列をなしており、公差は2。第m m 群の初項は2。
m m 群の最後の項は 2+(m31)2=2m32 + (m^3 - 1)2 = 2m^3
(1) k=1nakbk=k=1n(2k1)(2k+1)=k=1n(4k21)=4k=1nk2k=1n1=4n(n+1)(2n+1)6n=2n(n+1)(2n+1)3n=n3[2(n+1)(2n+1)3]=n(4n2+6n+23)3=n(4n2+6n1)3 \sum_{k=1}^n a_k b_k = \sum_{k=1}^n (2k-1)(2k+1) = \sum_{k=1}^n (4k^2 - 1) = 4 \sum_{k=1}^n k^2 - \sum_{k=1}^n 1 = 4 \cdot \frac{n(n+1)(2n+1)}{6} - n = \frac{2n(n+1)(2n+1)}{3} - n = \frac{n}{3} [2(n+1)(2n+1) - 3] = \frac{n(4n^2+6n+2-3)}{3} = \frac{n(4n^2+6n-1)}{3}
(2) k=1n1akbk=k=1n1(2k1)(2k+1)=k=1n12(12k112k+1)=12[(113)+(1315)+...+(12n112n+1)]=12(112n+1)=12(2n+112n+1)=n2n+1 \sum_{k=1}^n \frac{1}{a_k b_k} = \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \sum_{k=1}^n \frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}) = \frac{1}{2} [ (1 - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{5}) + ... + (\frac{1}{2n-1} - \frac{1}{2n+1}) ] = \frac{1}{2} (1 - \frac{1}{2n+1}) = \frac{1}{2} (\frac{2n+1-1}{2n+1}) = \frac{n}{2n+1}
(3) k=1ntk=k=1n(2k22k+2)=2k=1nk22k=1nk+2k=1n1=2n(n+1)(2n+1)62n(n+1)2+2n=n(n+1)(2n+1)3n(n+1)+2n=n3[(n+1)(2n+1)3(n+1)+6]=n3[2n2+3n+13n3+6]=n(2n2+4)3=2n(n2+2)3 \sum_{k=1}^n t_k = \sum_{k=1}^n (2k^2 - 2k + 2) = 2 \sum_{k=1}^n k^2 - 2 \sum_{k=1}^n k + 2 \sum_{k=1}^n 1 = 2 \cdot \frac{n(n+1)(2n+1)}{6} - 2 \cdot \frac{n(n+1)}{2} + 2n = \frac{n(n+1)(2n+1)}{3} - n(n+1) + 2n = \frac{n}{3} [ (n+1)(2n+1) - 3(n+1) + 6 ] = \frac{n}{3} [ 2n^2 + 3n + 1 - 3n - 3 + 6 ] = \frac{n(2n^2+4)}{3} = \frac{2n(n^2+2)}{3}
(4) k=1nakdk=k=1n(2k1)2k=k=1n2k2kk=1n2k=2k=1nk2kk=1n2k \sum_{k=1}^n a_k d_k = \sum_{k=1}^n (2k-1) 2^k = \sum_{k=1}^n 2k \cdot 2^k - \sum_{k=1}^n 2^k = 2 \sum_{k=1}^n k 2^k - \sum_{k=1}^n 2^k
S=k=1nk2k=121+222+323+...+n2n S = \sum_{k=1}^n k 2^k = 1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + ... + n \cdot 2^n
2S=122+223+...+(n1)2n+n2n+1 2S = 1 \cdot 2^2 + 2 \cdot 2^3 + ... + (n-1) \cdot 2^n + n \cdot 2^{n+1}
S2S=21+22+23+...+2nn2n+1 S - 2S = 2^1 + 2^2 + 2^3 + ... + 2^n - n \cdot 2^{n+1}
S=2(2n1)21n2n+1=2n+12n2n+1 -S = \frac{2(2^n - 1)}{2-1} - n \cdot 2^{n+1} = 2^{n+1} - 2 - n \cdot 2^{n+1}
S=(n1)2n+1+2 S = (n-1) 2^{n+1} + 2
k=1n2k=2(2n1)21=2n+12 \sum_{k=1}^n 2^k = \frac{2(2^n - 1)}{2-1} = 2^{n+1} - 2
k=1nakdk=2[(n1)2n+1+2](2n+12)=(2n2)2n+1+42n+1+2=(2n3)2n+1+6 \sum_{k=1}^n a_k d_k = 2 [ (n-1) 2^{n+1} + 2 ] - (2^{n+1} - 2) = (2n-2) 2^{n+1} + 4 - 2^{n+1} + 2 = (2n-3) 2^{n+1} + 6
(5) k=1n1akbkck=k=1n1(2k1)(2k+1)(2k+3)=k=1n18(1(2k1)(2k+1)1(2k+1)(2k+3)) \sum_{k=1}^n \frac{1}{a_k b_k c_k} = \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)(2k+3)} = \sum_{k=1}^n \frac{1}{8} (\frac{1}{(2k-1)(2k+1)} - \frac{1}{(2k+1)(2k+3)})
=18k=1n(12(12k112k+1)12(12k+112k+3))= \frac{1}{8} \sum_{k=1}^n (\frac{1}{2} (\frac{1}{2k-1} - \frac{1}{2k+1}) - \frac{1}{2} (\frac{1}{2k+1} - \frac{1}{2k+3}))
=116k=1n(12k122k+1+12k+3)= \frac{1}{16} \sum_{k=1}^n ( \frac{1}{2k-1} - \frac{2}{2k+1} + \frac{1}{2k+3} )
=116((123+15)+(1325+17)+...+(12n122n+1+12n+3))= \frac{1}{16} ( (1 - \frac{2}{3} + \frac{1}{5}) + (\frac{1}{3} - \frac{2}{5} + \frac{1}{7}) + ... + (\frac{1}{2n-1} - \frac{2}{2n+1} + \frac{1}{2n+3}) )
=116(11312n+1+12n+3)=116(232(2n+1)(2n+3))=12418(2n+1)(2n+3)=(2n+1)(2n+3)324(2n+1)(2n+3)=4n2+8n24(2n+1)(2n+3)=n(n+2)6(2n+1)(2n+3)= \frac{1}{16} ( 1 - \frac{1}{3} - \frac{1}{2n+1} + \frac{1}{2n+3}) = \frac{1}{16} ( \frac{2}{3} - \frac{2}{(2n+1)(2n+3)} ) = \frac{1}{24} - \frac{1}{8(2n+1)(2n+3)} = \frac{(2n+1)(2n+3)-3}{24(2n+1)(2n+3)} = \frac{4n^2+8n}{24(2n+1)(2n+3)} = \frac{n(n+2)}{6(2n+1)(2n+3)}
(6) k=1nk2dk=k=1nk22k \sum_{k=1}^n k^2 d_k = \sum_{k=1}^n k^2 2^k
S=k=1nk22k=1221+2222+3223+...+n22nS = \sum_{k=1}^n k^2 2^k = 1^2 2^1 + 2^2 2^2 + 3^2 2^3 + ... + n^2 2^n
2S=1222+2223+...+(n1)22n+n22n+12S = 1^2 2^2 + 2^2 2^3 + ... + (n-1)^2 2^n + n^2 2^{n+1}
S=2+(2212)22+(3222)23+...+(n2(n1)2)2nn22n+1-S = 2 + (2^2 - 1^2)2^2 + (3^2 - 2^2) 2^3 + ... + (n^2 - (n-1)^2) 2^n - n^2 2^{n+1}
=2+k=2n(k2(k1)2)2kn22n+1 = 2 + \sum_{k=2}^n (k^2 - (k-1)^2) 2^k - n^2 2^{n+1}
=2+k=2n(2k1)2kn22n+1=2+2k=2nk2kk=2n2kn22n+1 = 2 + \sum_{k=2}^n (2k-1) 2^k - n^2 2^{n+1} = 2 + 2 \sum_{k=2}^n k 2^k - \sum_{k=2}^n 2^k - n^2 2^{n+1}
=2+2[(n1)2n+1+22](2n+122)n22n+1 = 2 + 2 [ (n-1) 2^{n+1} + 2 - 2] - (2^{n+1} - 2 - 2 ) - n^2 2^{n+1}
=2+2(n1)2n+1(2n+14)n22n+1=6+(2n3)2n+1n22n+1 = 2 + 2 (n-1) 2^{n+1} - (2^{n+1} - 4) - n^2 2^{n+1} = 6 + (2n-3) 2^{n+1} - n^2 2^{n+1}
=6+(2n3n2)2n+1=6(n22n+3)2n+1 = 6 + (2n - 3 - n^2) 2^{n+1} = 6 - (n^2 - 2n + 3) 2^{n+1}
S=(n22n+3)2n+16S = (n^2 - 2n + 3) 2^{n+1} - 6
(7) k=12025ukk=19k3 \frac{\sum_{k=1}^{2025} u_k}{\sum_{k=1}^{9} k^3}
{un} \{u_n\} は群数列で、第m m 群は m3 m^3 個の項を含む。m=1km3=(k(k+1)2)2 \sum_{m=1}^k m^3 = (\frac{k(k+1)}{2})^2 なので、 (k(k+1)2)22025 (\frac{k(k+1)}{2})^2 \leq 2025 を満たす最大の k k を求める。
k(k+1)22025=45 \frac{k(k+1)}{2} \leq \sqrt{2025} = 45
k(k+1)90 k(k+1) \leq 90
k=9k=9のとき k(k+1)=9(10)=90k(k+1) = 9(10) = 90 よって、k=9
したがって、2025項目までには9個の群が含まれる。
k=12025uk\sum_{k=1}^{2025} u_k = m=19 \sum_{m=1}^9 (第mm群の和)
mm群は等差数列で、初項は2、末項は2m32m^3、項数はm3m^3である。よって、第mm群の和は
m3(2+2m3)2=m3(1+m3)=m3+m6\frac{m^3(2+2m^3)}{2} = m^3(1+m^3) = m^3 + m^6
k=12025uk=m=19(m3+m6)=m=19m3+m=19m6\sum_{k=1}^{2025} u_k = \sum_{m=1}^9 (m^3 + m^6) = \sum_{m=1}^9 m^3 + \sum_{m=1}^9 m^6
m=19m3=(9(10)2)2=452=2025 \sum_{m=1}^9 m^3 = (\frac{9(10)}{2})^2 = 45^2 = 2025
m=19m6=16+26+36+46+56+66+76+86+96=2751159 \sum_{m=1}^9 m^6 = 1^6+2^6+3^6+4^6+5^6+6^6+7^6+8^6+9^6=2751159
k=12025uk=2025+2751159=2753184 \sum_{k=1}^{2025} u_k = 2025 + 2751159 = 2753184
k=19k3=(9(10)2)2=2025 \sum_{k=1}^9 k^3 = (\frac{9(10)}{2})^2 = 2025
よって、k=12025ukk=19k3=27531842025=917728675 \frac{\sum_{k=1}^{2025} u_k}{\sum_{k=1}^{9} k^3} = \frac{2753184}{2025} = \frac{917728}{675}

3. 最終的な答え

(1) n(4n2+6n1)3 \frac{n(4n^2+6n-1)}{3}
(2) n2n+1 \frac{n}{2n+1}
(3) 2n(n2+2)3 \frac{2n(n^2+2)}{3}
(4) (2n3)2n+1+6 (2n-3) 2^{n+1} + 6
(5) n(n+2)6(2n+1)(2n+3) \frac{n(n+2)}{6(2n+1)(2n+3)}
(6) (n22n+3)2n+16 (n^2 - 2n + 3) 2^{n+1} - 6
(7) 917728675 \frac{917728}{675}