与えられた式 $(x+3y)^2 - 49$ を因数分解する問題です。

代数学因数分解代数式二乗の差
2025/7/13

1. 問題の内容

与えられた式 (x+3y)249(x+3y)^2 - 49 を因数分解する問題です。

2. 解き方の手順

この式は A2B2A^2 - B^2 の形をしているので、因数分解の公式 A2B2=(A+B)(AB)A^2 - B^2 = (A+B)(A-B) を利用します。
まず、4949727^2 と書き換えます。すると、与えられた式は (x+3y)272(x+3y)^2 - 7^2 となります。
ここで、A=x+3yA = x+3yB=7B = 7 と考えると、A2B2A^2 - B^2 の形になっていることがわかります。
したがって、因数分解の公式を適用すると、
(x+3y)272=(x+3y+7)(x+3y7)(x+3y)^2 - 7^2 = (x+3y + 7)(x+3y - 7)
となります。

3. 最終的な答え

(x+3y+7)(x+3y7)(x+3y+7)(x+3y-7)

「代数学」の関連問題

与えられた2次関数 $y = -2x^2 + 10$ の、定義域 $1 \le x \le 2$ における最大値と最小値を求める問題です。

二次関数最大値最小値定義域放物線
2025/7/17

2次関数 $y = x^2$ の定義域 $-2 \le x \le 1$ における最大値と最小値を求める問題です。

二次関数最大値最小値定義域
2025/7/17

二次関数 $y = -x^2 + 6x - 5$ の最大値と最小値を求める問題です。選択肢の中から選びます。

二次関数最大値最小値平方完成放物線
2025/7/17

2次関数 $y = 2x^2 - 8x + 9$ の最大値と最小値を求める問題です。選択肢の中から、最大値、最小値があれば選び、なければ「ない」を選びます。

二次関数最大値最小値平方完成放物線
2025/7/17

与えられた2次関数 $y = -(x+3)^2 + 4$ の最大値と最小値を求める問題です。選択肢の中から該当する値を選びます。

二次関数最大値最小値放物線
2025/7/17

与えられた2次関数 $y=(x-1)^2+2$ の最大値と最小値を求める問題です。ただし、選択肢は 1, 2, 3, 4, 「ない」の5つです。

二次関数最大値最小値放物線平方完成
2025/7/17

与えられた二次関数について、頂点の座標、軸の方程式、グラフが上に凸か下に凸かを求め、グラフを描く問題です。具体的には、次の4つの関数について考えます。 (1) $y = x^2 + 3$ (2) $y...

二次関数グラフ頂点放物線
2025/7/17

$a$ を実数とするとき、$x$ の2次方程式 $2x^2 - 3(a-1)x - 2a^2 - a + 1 = 0$ ...(1) について、以下の問いに答える。 1) 因数分解を利用して、2次方程...

二次方程式因数分解判別式
2025/7/17

与えられた二次関数の頂点、軸、グラフの向き(上に凸か下に凸か)を求める問題です。

二次関数頂点グラフ上に凸下に凸
2025/7/17

問題7は、等差数列に関する問題です。 (1) 第10項が168、第25項が408であるとき、1000が第何項であるかを求める問題です。 (2) 初項から第何項までの和が初めて1000より大きくなるかを...

等差数列数列連立方程式等差数列の和
2025/7/17