与えられた2次関数 $y = -(x+3)^2 + 4$ の最大値と最小値を求める問題です。選択肢の中から該当する値を選びます。

代数学二次関数最大値最小値放物線
2025/7/17

1. 問題の内容

与えられた2次関数 y=(x+3)2+4y = -(x+3)^2 + 4 の最大値と最小値を求める問題です。選択肢の中から該当する値を選びます。

2. 解き方の手順

* 2次関数の式 y=(x+3)2+4y = -(x+3)^2 + 4 を見ると、これは頂点が (3,4)(-3, 4) の上に凸な放物線であることがわかります。
* x2x^2の係数が負なので、このグラフは上に開いています。つまり、最大値はありますが、最小値はありません。
* 最大値は頂点のy座標、つまり 44 です。
* 最小値は存在しません。

3. 最終的な答え

最大値:4
最小値:ない

「代数学」の関連問題

問題は、乗法公式を5つ記述することと、与えられた5つの式を因数分解することです。

因数分解乗法公式二次方程式二乗の差完全平方式たすき掛け
2025/7/18

次の不等式を解きます。 (1) $5x+16 \le 9x-4$ (2) $3(1-2x) \le \frac{1-3x}{2}$ (3) $|x-2| < 4$ (4) $6-5x < 3x-2 <...

不等式一次不等式絶対値不等式
2025/7/18

この問題は、以下の3つのパートに分かれています。 1. 単項式の次数を求める問題

多項式単項式次数降べきの順整式
2025/7/18

問題は2つあります。 1つ目は、$(x-1)(x-2)(x-3) = 4 \cdot 3 \cdot 2$ を解く問題です。 2つ目は、$(x^2 - 5x + 1)(x^2 - 5x + 9) + ...

三次方程式二次方程式因数分解複素数変数変換
2025/7/18

画像に書かれた2つの方程式を解く問題です。 (1) $(x-1)(x-2)(x-3) = 4 \cdot 3 \cdot 2$ (2) $(x^2 - 5x + 1)(x^2 - 5x + 9) + ...

三次方程式二次方程式因数分解解の公式方程式の解法
2025/7/18

複素数の計算問題です。 $\left(\frac{-\sqrt{3}+j}{2-2j}\right)^3$ を計算します。

複素数複素数の計算極形式
2025/7/18

多項式 $P(x)$ を $x^2 - 1$ で割ると余りが $4x - 3$、$x^2 - 4$ で割ると余りが $3x + 5$ であるとき、$P(x)$ を $x^2 + 3x + 2$ で割っ...

多項式剰余の定理因数定理代数
2025/7/18

(4) 2次方程式 $(k^2-1)x^2 + 2(k+1)x + 2 = 0$ が重解を持つように、定数 $k$ の値を定める。 (5) 2次方程式 $2x^2 - 4x + 1 = 0$ の2つの...

二次方程式判別式解と係数の関係解の公式
2025/7/18

与えられた行列 $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 2 & 1 \\ 2 & 2 & 4 \end{pmatrix}$ の固有値を求める。

線形代数行列固有値
2025/7/18

画像には複数の問題がありますが、ここでは3番の問題を解きます。 $\alpha = \frac{3+i}{1+i} + \frac{x-i}{1-i}$ が純虚数となるとき、実数 $x$ の値を求めま...

複素数複素数の計算純虚数
2025/7/18