$\int 3x^2 dx = x^3 + C$ について、以下の3つの問いに答えます。 (1) 記号 $\int$ の読み方を答えます。 (2) 文字 $C$ の部分を何というか答えます。 (3) $x^3 + C$ を $3x^2$ の何というか答えます。

解析学積分不定積分積分記号積分定数
2025/7/13

1. 問題の内容

3x2dx=x3+C\int 3x^2 dx = x^3 + C について、以下の3つの問いに答えます。
(1) 記号 \int の読み方を答えます。
(2) 文字 CC の部分を何というか答えます。
(3) x3+Cx^3 + C3x23x^2 の何というか答えます。

2. 解き方の手順

(1) 記号 \int は積分記号と呼ばれ、「インテグラル」と読みます。
(2) 文字 CC は積分定数と呼ばれます。不定積分を行う際に現れる任意の定数を表します。
(3) x3+Cx^3 + C3x23x^2 の不定積分と呼ばれます。微分すると 3x23x^2 になる関数全体を表します。

3. 最終的な答え

(1) インテグラル
(2) 積分定数
(3) 不定積分

「解析学」の関連問題

与えられた画像の問題を解く。具体的には以下の問いに答える。 (1) 曲線 $y=e^{-x}$ について、導関数 $y'$ を求め、点 $A(-1, e)$ における接線の方程式を求める。 (2) 曲...

導関数接線微分定義域増減
2025/7/15

まず、与えられた関数を $(2x+3)^{-2}$ と書き換えます。

導関数微分合成関数連鎖律
2025/7/15

以下の関数の微分を求めます。 (7) $y = e^{2x+1}$ (8) $y = 4^x$ (9) $y = xe^{-3x}$ (10) $y = e^x \cos x$ (11) $y = (...

微分指数関数合成関数の微分積の微分
2025/7/15

次の関数を微分せよ。ただし、$a$ は1でない正の定数とする。 (1) $y = \log 4x$ (2) $y = \log_2(3x - 2)$ (3) $y = \log (x^2 + 2)$ ...

微分対数関数合成関数の微分積の微分
2025/7/15

与えられた4つの関数について、特に指示がないため、それぞれの定義域を求めます。 (1) $y = \log 4x$ (2) $y = \log_2(3x-2)$ (3) $y = \log(x^2+2...

対数関数定義域真数条件
2025/7/15

与えられた関数を微分する問題です。具体的には、 (16) $y = 2x \sin x$ (17) $y = \cos^3 x$ (18) $y = \frac{1}{\cos x}$ (19) $y...

微分導関数合成関数三角関数
2025/7/15

関数 $y = \sin x - \tan x$ の導関数 $dy/dx$ を求めます。

導関数微分三角関数
2025/7/15

与えられた関数 $y$ の導関数 $y'$ をそれぞれ求める問題です。 (12) $y = \cos(2x - 1)$ (13) $y = \tan(3x)$ (14) $y = \sin(x^2)$...

微分導関数合成関数三角関数
2025/7/15

問題(9)は、$y = x\sqrt[3]{x^2}$ を微分することです。問題(10)は、$y = 2x - \cos x$ を微分することです。

微分関数べき乗三角関数
2025/7/15

与えられた3つの関数をそれぞれ微分せよ。 (6) $y = (x + \frac{1}{x})^3$ (7) $y = \sqrt[6]{x}$ (8) $y = \frac{1}{\sqrt[4]{...

微分合成関数累乗根
2025/7/15