次の2つの定積分を計算します。 (1) $\int_{1}^{2} (3x^2 - 4x) dx$ (2) $\int_{0}^{3} (x^2 - x - 2) dx$解析学定積分積分計算2025/7/131. 問題の内容次の2つの定積分を計算します。(1) ∫12(3x2−4x)dx\int_{1}^{2} (3x^2 - 4x) dx∫12(3x2−4x)dx(2) ∫03(x2−x−2)dx\int_{0}^{3} (x^2 - x - 2) dx∫03(x2−x−2)dx2. 解き方の手順(1) ∫12(3x2−4x)dx\int_{1}^{2} (3x^2 - 4x) dx∫12(3x2−4x)dxまず、不定積分を計算します。∫(3x2−4x)dx=x3−2x2+C\int (3x^2 - 4x) dx = x^3 - 2x^2 + C∫(3x2−4x)dx=x3−2x2+C次に、定積分を計算します。∫12(3x2−4x)dx=[x3−2x2]12\int_{1}^{2} (3x^2 - 4x) dx = [x^3 - 2x^2]_{1}^{2}∫12(3x2−4x)dx=[x3−2x2]12=(23−2(22))−(13−2(12))= (2^3 - 2(2^2)) - (1^3 - 2(1^2))=(23−2(22))−(13−2(12))=(8−8)−(1−2)= (8 - 8) - (1 - 2)=(8−8)−(1−2)=0−(−1)= 0 - (-1)=0−(−1)=1= 1=1(2) ∫03(x2−x−2)dx\int_{0}^{3} (x^2 - x - 2) dx∫03(x2−x−2)dxまず、不定積分を計算します。∫(x2−x−2)dx=13x3−12x2−2x+C\int (x^2 - x - 2) dx = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + C∫(x2−x−2)dx=31x3−21x2−2x+C次に、定積分を計算します。∫03(x2−x−2)dx=[13x3−12x2−2x]03\int_{0}^{3} (x^2 - x - 2) dx = [\frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x]_{0}^{3}∫03(x2−x−2)dx=[31x3−21x2−2x]03=(13(33)−12(32)−2(3))−(13(03)−12(02)−2(0))= (\frac{1}{3}(3^3) - \frac{1}{2}(3^2) - 2(3)) - (\frac{1}{3}(0^3) - \frac{1}{2}(0^2) - 2(0))=(31(33)−21(32)−2(3))−(31(03)−21(02)−2(0))=(9−92−6)−(0)= (9 - \frac{9}{2} - 6) - (0)=(9−29−6)−(0)=3−92= 3 - \frac{9}{2}=3−29=62−92= \frac{6}{2} - \frac{9}{2}=26−29=−32= -\frac{3}{2}=−233. 最終的な答え(1) 1(2) −32-\frac{3}{2}−23