次の2つの方程式で表される陰関数の微分 $\frac{dy}{dx}$ を求める。 (1) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (2) $e^{x+y} - x^2y^2 = 0$解析学微分陰関数微分法2025/7/131. 問題の内容次の2つの方程式で表される陰関数の微分 dydx\frac{dy}{dx}dxdy を求める。(1) x2a2−y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1a2x2−b2y2=1(2) ex+y−x2y2=0e^{x+y} - x^2y^2 = 0ex+y−x2y2=02. 解き方の手順(1) x2a2−y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1a2x2−b2y2=1 の両辺を xxx で微分する。ddx(x2a2−y2b2)=ddx(1)\frac{d}{dx} \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right) = \frac{d}{dx} (1)dxd(a2x2−b2y2)=dxd(1)2xa2−2yb2dydx=0\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0a22x−b22ydxdy=02yb2dydx=2xa2\frac{2y}{b^2} \frac{dy}{dx} = \frac{2x}{a^2}b22ydxdy=a22xdydx=2xa2⋅b22y\frac{dy}{dx} = \frac{2x}{a^2} \cdot \frac{b^2}{2y}dxdy=a22x⋅2yb2dydx=b2xa2y\frac{dy}{dx} = \frac{b^2x}{a^2y}dxdy=a2yb2x(2) ex+y−x2y2=0e^{x+y} - x^2y^2 = 0ex+y−x2y2=0 の両辺を xxx で微分する。ddx(ex+y−x2y2)=ddx(0)\frac{d}{dx} (e^{x+y} - x^2y^2) = \frac{d}{dx} (0)dxd(ex+y−x2y2)=dxd(0)ex+yddx(x+y)−(2xy2+x2(2ydydx))=0e^{x+y} \frac{d}{dx}(x+y) - \left(2xy^2 + x^2(2y\frac{dy}{dx})\right) = 0ex+ydxd(x+y)−(2xy2+x2(2ydxdy))=0ex+y(1+dydx)−2xy2−2x2ydydx=0e^{x+y} \left(1 + \frac{dy}{dx}\right) - 2xy^2 - 2x^2y \frac{dy}{dx} = 0ex+y(1+dxdy)−2xy2−2x2ydxdy=0ex+y+ex+ydydx−2xy2−2x2ydydx=0e^{x+y} + e^{x+y} \frac{dy}{dx} - 2xy^2 - 2x^2y \frac{dy}{dx} = 0ex+y+ex+ydxdy−2xy2−2x2ydxdy=0ex+ydydx−2x2ydydx=2xy2−ex+ye^{x+y} \frac{dy}{dx} - 2x^2y \frac{dy}{dx} = 2xy^2 - e^{x+y}ex+ydxdy−2x2ydxdy=2xy2−ex+ydydx(ex+y−2x2y)=2xy2−ex+y\frac{dy}{dx} (e^{x+y} - 2x^2y) = 2xy^2 - e^{x+y}dxdy(ex+y−2x2y)=2xy2−ex+ydydx=2xy2−ex+yex+y−2x2y\frac{dy}{dx} = \frac{2xy^2 - e^{x+y}}{e^{x+y} - 2x^2y}dxdy=ex+y−2x2y2xy2−ex+y3. 最終的な答え(1) dydx=b2xa2y\frac{dy}{dx} = \frac{b^2x}{a^2y}dxdy=a2yb2x(2) dydx=2xy2−ex+yex+y−2x2y\frac{dy}{dx} = \frac{2xy^2 - e^{x+y}}{e^{x+y} - 2x^2y}dxdy=ex+y−2x2y2xy2−ex+y