三角形 $ABC$ と三角形 $A'B'C'$ において、$\angle A = \angle A'$、$\angle B = \angle B' = 90^\circ$、$AB = 2$、$BC = 1$、$A'B' = 3$ である。このとき、$A'C'$ の長さを求める問題。

幾何学三角形相似三平方の定理辺の比
2025/7/13

1. 問題の内容

三角形 ABCABC と三角形 ABCA'B'C' において、A=A\angle A = \angle A'B=B=90\angle B = \angle B' = 90^\circAB=2AB = 2BC=1BC = 1AB=3A'B' = 3 である。このとき、ACA'C' の長さを求める問題。

2. 解き方の手順

まず、ABC\triangle ABC において、三平方の定理より AC2=AB2+BC2AC^2 = AB^2 + BC^2 なので、AC2=22+12=4+1=5AC^2 = 2^2 + 1^2 = 4 + 1 = 5。よって、AC=5AC = \sqrt{5}
次に、ABCABC\triangle ABC \sim \triangle A'B'C' であるから、AB:AB=AC:ACAB : A'B' = AC : A'C' が成り立つ。
2:3=5:AC2 : 3 = \sqrt{5} : A'C' となるので、2×AC=352 \times A'C' = 3 \sqrt{5}
したがって、AC=352A'C' = \frac{3\sqrt{5}}{2}

3. 最終的な答え

352\frac{3\sqrt{5}}{2}

「幾何学」の関連問題

$xyz$空間における不等式 $0 \le z \le 1 - x^2 - y^2$ で表される図形の概形を描く問題です。

3次元空間不等式放物面回転体図形概形
2025/7/13

双曲線の方程式を求める問題です。 与えられた条件は以下の通りです。 * 漸近線が $x = 2$ と $y = -1$ * 点 $(3, 2)$ を通る 双曲線の方程式は $y = \frac...

双曲線漸近線方程式代数
2025/7/13

2つの直線 $y=3x+1$ と $y=\frac{1}{2}x+2$ のなす角 $\theta$ ($0 < \theta < \frac{\pi}{2}$) を求める問題です。

直線角度傾き三角関数
2025/7/13

問題1: 直線 $4x + 3y + 1 = 0$ に関して、点 $A(-5, -2)$ と対称な点 $B$ の座標を求める。 問題2: 2点 $A(3, 4)$, $B(5, 0)$ について、線分...

座標平面直線点と直線の対称移動垂直二等分線方程式
2025/7/13

問題2について、以下の4つの問いに答えます。 (1) 2点A(3, 2)とB(1, 5)の距離を求めます。 (2) 直線ABの方程式を求めます。 (3) 点C(-2, -1)と直線ABの距離を求めます...

座標平面距離直線三角形の面積点と直線の距離
2025/7/13

与えられたグラフに一致する三角関数を、選択肢①~⑧の中から全て選ぶ問題です。グラフは$y = \cos \theta$ を平行移動および上下反転した形をしています。

三角関数グラフ平行移動位相cos
2025/7/13

3つの直角三角形について、それぞれ角度$\theta$に対する$\sin \theta$, $\cos \theta$, $\tan \theta$の値を求めよ。

三角比直角三角形sincostanピタゴラスの定理
2025/7/13

$\triangle OAB$ において、辺 $AB$ を $2:3$ に内分する点を $L$ 、辺 $OA$ の中点を $M$ とする。線分 $OL$ と線分 $BM$ の交点を $P$ とするとき...

ベクトル内分点線分の比
2025/7/13

三角関数の問題が5つあります。 (1) $\alpha, \beta$ が鋭角で、$\sin{\alpha} = \frac{3}{5}$, $\cos{\beta} = \frac{5}{13}$ ...

三角関数加法定理三角関数の合成三角方程式グラフの平行移動
2025/7/13

領域 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4, y \ge 0\}$ を極座標変換したとき、$r\theta$ 平面上の領域 $D_0$ として正しいものを選択肢か...

極座標変換領域積分
2025/7/13