正六角形について、次の数を求める問題です。 (1) 3個の頂点を結んでできる三角形の個数 (2) 4個の頂点を結んでできる四角形の個数 (3) 2個の頂点を結ぶ線分の本数 (4) 対角線の本数

幾何学組み合わせ正六角形組み合わせ図形
2025/7/13

1. 問題の内容

正六角形について、次の数を求める問題です。
(1) 3個の頂点を結んでできる三角形の個数
(2) 4個の頂点を結んでできる四角形の個数
(3) 2個の頂点を結ぶ線分の本数
(4) 対角線の本数

2. 解き方の手順

(1) 3個の頂点を結んでできる三角形の個数
正六角形の6個の頂点から3個を選ぶ組み合わせを考えます。これは組み合わせの公式 nCr=n!r!(nr)!_{n}C_{r} = \frac{n!}{r!(n-r)!} を使って計算できます。
6C3=6!3!(63)!=6!3!3!=6×5×43×2×1=20_{6}C_{3} = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20
したがって、三角形は20個作れます。
(2) 4個の頂点を結んでできる四角形の個数
正六角形の6個の頂点から4個を選ぶ組み合わせを考えます。
6C4=6!4!(64)!=6!4!2!=6×52×1=15_{6}C_{4} = \frac{6!}{4!(6-4)!} = \frac{6!}{4!2!} = \frac{6 \times 5}{2 \times 1} = 15
したがって、四角形は15個作れます。
(3) 2個の頂点を結ぶ線分の本数
正六角形の6個の頂点から2個を選ぶ組み合わせを考えます。
6C2=6!2!(62)!=6!2!4!=6×52×1=15_{6}C_{2} = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15
したがって、線分の本数は15本です。
(4) 対角線の本数
正六角形の頂点の数は6です。対角線の本数は、全ての線分の本数から辺の本数を引けば求められます。
全ての線分の本数は(3)より15本です。
正六角形の辺の数は6本です。
対角線の本数 = 全ての線分の本数 - 辺の数 = 15 - 6 = 9
または、対角線の本数を直接計算する公式 n(n3)2\frac{n(n-3)}{2} を使います。
6(63)2=6×32=182=9\frac{6(6-3)}{2} = \frac{6 \times 3}{2} = \frac{18}{2} = 9
したがって、対角線の本数は9本です。

3. 最終的な答え

(1) 20個
(2) 15個
(3) 15本
(4) 9本

「幾何学」の関連問題

四面体OABCがあり、O(0,0,0), A(1,1,4), B(4,-2,2), C(2,2,-2)を頂点とする。 (1) Oから辺BCに下ろした垂線と辺BCの交点Qについて、線分OQの長さを求める...

ベクトル空間ベクトル四面体面積体積
2025/7/14

与えられた角度の動径を図示する問題です。ここでは、選択肢の中から動径を特定するのではなく、各角度の動径がどの位置にあるか(どの象限にあるか)を考えます。

角度動径象限三角関数
2025/7/14

(2) 各角度の動径を図示する問題です。 (3) 各角度を $\alpha + 360^\circ \times n$ の形で表す問題です。ただし、$0^\circ \leq \alpha < 360...

角度動径三角関数度数法
2025/7/14

座標平面上に、点A(0, 5) を中心とし、$x$軸に接する円Kがある。また、円Kは直線$l: y = 7x + 5k$と異なる2点B, Cで交わっている。ただし、$k$は定数である。 (1) 円Kの...

接線座標平面方程式距離正方形
2025/7/14

図に示された角 $\theta$ の値を求める問題です。全部で6つの図があり、それぞれ異なる角度の関係が与えられています。

角度平面図形
2025/7/14

## 問題 B3

正四面体体積ベクトル空間図形三角比
2025/7/14

(1) 直線 $x + 2y = 0$ に関して、点 $A(3, -4)$ と対称な点 $B$ の座標を求めよ。 (2) 直線 $x + y + 1 = 0$ に関して、点 $A(3, 2)$ と対称...

座標対称点直線中点直交
2025/7/14

直角三角形ABCがあり、点Pは点Aから出発し、秒速2cmで辺AB、BC上を移動します。点PがAを出発してからx秒後の三角形APCの面積をy cm^2とするとき、以下の問いに答えます。 (1) 点PがA...

三角形面積グラフ一次関数
2025/7/14

直角三角形ABCがあり、点Pが点Aから秒速2cmで辺AB, BC上を通って点Cまで移動する。点Pが点Aを出発してからx秒後の三角形APCの面積を$y cm^2$とする。(1)点Pが点Aを出発してから点...

三角形面積グラフ線形関数直角三角形
2025/7/14

直線 $l: y = \frac{1}{2}x + 1$ と直線 $m: y = -x + 4$ が与えられています。 (1) 直線 $l$ と直線 $m$ の交点 A の座標を求める問題です。 (2...

直線交点三角形の面積座標平面
2025/7/14