与えられた極限値を求める問題です。 $$ \lim_{n \to \infty} \frac{1}{\sqrt{n^2+2n} - \sqrt{n^2-2n}} $$解析学極限数列有理化2025/7/141. 問題の内容与えられた極限値を求める問題です。limn→∞1n2+2n−n2−2n \lim_{n \to \infty} \frac{1}{\sqrt{n^2+2n} - \sqrt{n^2-2n}} n→∞limn2+2n−n2−2n12. 解き方の手順まず、分母を有理化します。1n2+2n−n2−2n=n2+2n+n2−2n(n2+2n−n2−2n)(n2+2n+n2−2n) \frac{1}{\sqrt{n^2+2n} - \sqrt{n^2-2n}} = \frac{\sqrt{n^2+2n} + \sqrt{n^2-2n}}{(\sqrt{n^2+2n} - \sqrt{n^2-2n})(\sqrt{n^2+2n} + \sqrt{n^2-2n})} n2+2n−n2−2n1=(n2+2n−n2−2n)(n2+2n+n2−2n)n2+2n+n2−2n分母を計算すると、(n2+2n)2−(n2−2n)2=(n2+2n)−(n2−2n)=4n (\sqrt{n^2+2n})^2 - (\sqrt{n^2-2n})^2 = (n^2+2n) - (n^2-2n) = 4n (n2+2n)2−(n2−2n)2=(n2+2n)−(n2−2n)=4nよって、n2+2n+n2−2n4n \frac{\sqrt{n^2+2n} + \sqrt{n^2-2n}}{4n} 4nn2+2n+n2−2n分子の根号の中から n2n^2n2 をくくり出し、nnnとして分母と約分します。n2(1+2n)+n2(1−2n)4n=n1+2n+n1−2n4n=1+2n+1−2n4 \frac{\sqrt{n^2(1+\frac{2}{n})} + \sqrt{n^2(1-\frac{2}{n})}}{4n} = \frac{n\sqrt{1+\frac{2}{n}} + n\sqrt{1-\frac{2}{n}}}{4n} = \frac{\sqrt{1+\frac{2}{n}} + \sqrt{1-\frac{2}{n}}}{4} 4nn2(1+n2)+n2(1−n2)=4nn1+n2+n1−n2=41+n2+1−n2n→∞n \to \inftyn→∞ のとき、2n→0\frac{2}{n} \to 0n2→0 であるから、limn→∞1+2n+1−2n4=1+0+1−04=1+14=24=12 \lim_{n \to \infty} \frac{\sqrt{1+\frac{2}{n}} + \sqrt{1-\frac{2}{n}}}{4} = \frac{\sqrt{1+0} + \sqrt{1-0}}{4} = \frac{1+1}{4} = \frac{2}{4} = \frac{1}{2} n→∞lim41+n2+1−n2=41+0+1−0=41+1=42=213. 最終的な答え12 \frac{1}{2} 21