$\lim_{x \to 1} \frac{\sin(\pi x)}{1-x}$ を計算せよ。解析学極限三角関数ロピタルの定理2025/7/141. 問題の内容limx→1sin(πx)1−x\lim_{x \to 1} \frac{\sin(\pi x)}{1-x}limx→11−xsin(πx) を計算せよ。2. 解き方の手順x=1+hx = 1 + hx=1+h とおくと、x→1x \to 1x→1 のとき h→0h \to 0h→0 となる。したがって、limx→1sin(πx)1−x=limh→0sin(π(1+h))1−(1+h)=limh→0sin(π+πh)−h\lim_{x \to 1} \frac{\sin(\pi x)}{1-x} = \lim_{h \to 0} \frac{\sin(\pi (1+h))}{1-(1+h)} = \lim_{h \to 0} \frac{\sin(\pi + \pi h)}{-h}x→1lim1−xsin(πx)=h→0lim1−(1+h)sin(π(1+h))=h→0lim−hsin(π+πh)三角関数の性質 sin(π+θ)=−sin(θ)\sin(\pi + \theta) = -\sin(\theta)sin(π+θ)=−sin(θ) より、=limh→0−sin(πh)−h=limh→0sin(πh)h= \lim_{h \to 0} \frac{-\sin(\pi h)}{-h} = \lim_{h \to 0} \frac{\sin(\pi h)}{h}=h→0lim−h−sin(πh)=h→0limhsin(πh)πh=t\pi h = tπh=t とおくと、h→0h \to 0h→0 のとき t→0t \to 0t→0 となる。=limt→0sin(t)t/π=limt→0πsin(t)t=πlimt→0sin(t)t= \lim_{t \to 0} \frac{\sin(t)}{t/\pi} = \lim_{t \to 0} \pi \frac{\sin(t)}{t} = \pi \lim_{t \to 0} \frac{\sin(t)}{t}=t→0limt/πsin(t)=t→0limπtsin(t)=πt→0limtsin(t)limt→0sin(t)t=1\lim_{t \to 0} \frac{\sin(t)}{t} = 1limt→0tsin(t)=1 なので、=π×1=π= \pi \times 1 = \pi=π×1=π3. 最終的な答えπ\piπ