80円の白い花を $x$ 本、70円の赤い花を $y$ 本買い、合計15本買ったという条件に合う2元1次方程式を選ぶ問題です。

代数学2元1次方程式文章問題数量関係
2025/7/14

1. 問題の内容

80円の白い花を xx 本、70円の赤い花を yy 本買い、合計15本買ったという条件に合う2元1次方程式を選ぶ問題です。

2. 解き方の手順

問題文から以下の2つの関係式が読み取れます。
* 白い花の数 + 赤い花の数 = 合計の数
* 白い花の値段 + 赤い花の値段 = 合計金額(この問題では合計金額の情報は与えられていません)
したがって、白い花の数 xx と赤い花の数 yy の合計が15本であることから、
x+y=15x + y = 15
が成り立ちます。

3. 最終的な答え

x+y=15

「代数学」の関連問題

$ \frac{q-2}{p-1} \cdot (-\frac{3}{4}) = -1 $ を満たす $q$ と $p$ の関係を求める問題です。

一次方程式式の変形分数
2025/7/14

与えられた連立一次方程式を解く問題です。 $$ \begin{cases} -2x + y = -5 \\ 3x + 2y = 11 \end{cases} $$

連立一次方程式加減法方程式
2025/7/14

与えられた式は $4 \log_2 3 + \log_2 \sqrt{2} - 6 \log_2 2$ を計算して、その値を求める問題です。

対数対数の性質計算
2025/7/14

全ての実数 $x$ について、不等式 $(a-1)x^2 - 2(a-1)x + 3 \ge 0$ が成り立つような、定数 $a$ の値の範囲を求める問題です。

二次不等式判別式二次関数
2025/7/14

放物線を$y$軸に関して対称移動し、さらに$x$軸方向に-2、$y$軸方向に1だけ平行移動した結果、$y = x^2 + 6x + 10$ となった。元の放物線の方程式を求める問題です。

放物線平行移動対称移動二次関数
2025/7/14

与えられた方程式を解いて、$x$の値を求めます。方程式は次の通りです。 $3(x+2)^2 = (2x+1)(x-2)$

二次方程式方程式因数分解
2025/7/14

$x$ についての 2 次不等式 $ax^2 + 9x + 2b > 0$ の解が $4 < x < 5$ となるように、定数 $a, b$ の値を定める問題です。

二次不等式二次方程式解の範囲係数比較
2025/7/14

与えられた方程式 $(x-3)(x-4) = 2(x^2 - 9)$ を解いて、$x$ の値を求めます。

二次方程式因数分解方程式
2025/7/14

2次不等式 $3x^2 - 11x + 10 > 0$ を解きます。

二次不等式因数分解不等式の解法
2025/7/14

放物線 $y = x^2 + ax + b$ を、x軸方向に2、y軸方向に-1だけ平行移動したところ、頂点の座標が $(3, 1)$ になった。このとき、定数 $a$ と $b$ の値を求めよ。

二次関数放物線平行移動平方完成連立方程式
2025/7/14