関数 $f(x, y) = \sin\left(\frac{5x}{y}\right)$ の4つの2階偏導関数 $f_{xx}(x, y)$、$f_{xy}(x, y)$、$f_{yx}(x, y)$、$f_{yy}(x, y)$ を求める。解析学偏微分偏導関数多変数関数微積分2025/7/141. 問題の内容関数 f(x,y)=sin(5xy)f(x, y) = \sin\left(\frac{5x}{y}\right)f(x,y)=sin(y5x) の4つの2階偏導関数 fxx(x,y)f_{xx}(x, y)fxx(x,y)、fxy(x,y)f_{xy}(x, y)fxy(x,y)、fyx(x,y)f_{yx}(x, y)fyx(x,y)、fyy(x,y)f_{yy}(x, y)fyy(x,y) を求める。2. 解き方の手順まず、1階偏導関数を求める。fx(x,y)=∂∂xsin(5xy)=cos(5xy)⋅5y=5ycos(5xy)f_x(x, y) = \frac{\partial}{\partial x} \sin\left(\frac{5x}{y}\right) = \cos\left(\frac{5x}{y}\right) \cdot \frac{5}{y} = \frac{5}{y} \cos\left(\frac{5x}{y}\right)fx(x,y)=∂x∂sin(y5x)=cos(y5x)⋅y5=y5cos(y5x)fy(x,y)=∂∂ysin(5xy)=cos(5xy)⋅(−5xy2)=−5xy2cos(5xy)f_y(x, y) = \frac{\partial}{\partial y} \sin\left(\frac{5x}{y}\right) = \cos\left(\frac{5x}{y}\right) \cdot \left(-\frac{5x}{y^2}\right) = -\frac{5x}{y^2} \cos\left(\frac{5x}{y}\right)fy(x,y)=∂y∂sin(y5x)=cos(y5x)⋅(−y25x)=−y25xcos(y5x)次に、2階偏導関数を求める。fxx(x,y)=∂∂xfx(x,y)=∂∂x(5ycos(5xy))=5y⋅(−sin(5xy))⋅5y=−25y2sin(5xy)f_{xx}(x, y) = \frac{\partial}{\partial x} f_x(x, y) = \frac{\partial}{\partial x} \left(\frac{5}{y} \cos\left(\frac{5x}{y}\right)\right) = \frac{5}{y} \cdot \left(-\sin\left(\frac{5x}{y}\right)\right) \cdot \frac{5}{y} = -\frac{25}{y^2} \sin\left(\frac{5x}{y}\right)fxx(x,y)=∂x∂fx(x,y)=∂x∂(y5cos(y5x))=y5⋅(−sin(y5x))⋅y5=−y225sin(y5x)fxy(x,y)=∂∂yfx(x,y)=∂∂y(5ycos(5xy))=5(−1y2cos(5xy)+1ysin(5xy)⋅5xy2)=−5y2cos(5xy)+25xy3sin(5xy)f_{xy}(x, y) = \frac{\partial}{\partial y} f_x(x, y) = \frac{\partial}{\partial y} \left(\frac{5}{y} \cos\left(\frac{5x}{y}\right)\right) = 5 \left(-\frac{1}{y^2}\cos\left(\frac{5x}{y}\right) + \frac{1}{y} \sin\left(\frac{5x}{y}\right) \cdot \frac{5x}{y^2} \right) = -\frac{5}{y^2}\cos\left(\frac{5x}{y}\right) + \frac{25x}{y^3}\sin\left(\frac{5x}{y}\right)fxy(x,y)=∂y∂fx(x,y)=∂y∂(y5cos(y5x))=5(−y21cos(y5x)+y1sin(y5x)⋅y25x)=−y25cos(y5x)+y325xsin(y5x)fyx(x,y)=∂∂xfy(x,y)=∂∂x(−5xy2cos(5xy))=−5y2cos(5xy)−5xy2(−sin(5xy)⋅5y)=−5y2cos(5xy)+25xy3sin(5xy)f_{yx}(x, y) = \frac{\partial}{\partial x} f_y(x, y) = \frac{\partial}{\partial x} \left(-\frac{5x}{y^2} \cos\left(\frac{5x}{y}\right)\right) = -\frac{5}{y^2} \cos\left(\frac{5x}{y}\right) - \frac{5x}{y^2} \left(-\sin\left(\frac{5x}{y}\right) \cdot \frac{5}{y}\right) = -\frac{5}{y^2}\cos\left(\frac{5x}{y}\right) + \frac{25x}{y^3}\sin\left(\frac{5x}{y}\right)fyx(x,y)=∂x∂fy(x,y)=∂x∂(−y25xcos(y5x))=−y25cos(y5x)−y25x(−sin(y5x)⋅y5)=−y25cos(y5x)+y325xsin(y5x)fyy(x,y)=∂∂yfy(x,y)=∂∂y(−5xy2cos(5xy))=−5x(2y3cos(5xy)+1y2sin(5xy)⋅5xy2)=−10xy3cos(5xy)−25x2y4sin(5xy)f_{yy}(x, y) = \frac{\partial}{\partial y} f_y(x, y) = \frac{\partial}{\partial y} \left(-\frac{5x}{y^2} \cos\left(\frac{5x}{y}\right)\right) = -5x \left( \frac{2}{y^3}\cos\left(\frac{5x}{y}\right) + \frac{1}{y^2} \sin\left(\frac{5x}{y}\right) \cdot \frac{5x}{y^2} \right) = -\frac{10x}{y^3}\cos\left(\frac{5x}{y}\right) - \frac{25x^2}{y^4}\sin\left(\frac{5x}{y}\right)fyy(x,y)=∂y∂fy(x,y)=∂y∂(−y25xcos(y5x))=−5x(y32cos(y5x)+y21sin(y5x)⋅y25x)=−y310xcos(y5x)−y425x2sin(y5x)3. 最終的な答えfxx(x,y)=−25y2sin(5xy)f_{xx}(x, y) = -\frac{25}{y^2} \sin\left(\frac{5x}{y}\right)fxx(x,y)=−y225sin(y5x)fxy(x,y)=−5y2cos(5xy)+25xy3sin(5xy)f_{xy}(x, y) = -\frac{5}{y^2}\cos\left(\frac{5x}{y}\right) + \frac{25x}{y^3}\sin\left(\frac{5x}{y}\right)fxy(x,y)=−y25cos(y5x)+y325xsin(y5x)fyx(x,y)=−5y2cos(5xy)+25xy3sin(5xy)f_{yx}(x, y) = -\frac{5}{y^2}\cos\left(\frac{5x}{y}\right) + \frac{25x}{y^3}\sin\left(\frac{5x}{y}\right)fyx(x,y)=−y25cos(y5x)+y325xsin(y5x)fyy(x,y)=−10xy3cos(5xy)−25x2y4sin(5xy)f_{yy}(x, y) = -\frac{10x}{y^3}\cos\left(\frac{5x}{y}\right) - \frac{25x^2}{y^4}\sin\left(\frac{5x}{y}\right)fyy(x,y)=−y310xcos(y5x)−y425x2sin(y5x)