直角三角形ABCにおいて、点Pは点Bを出発し辺AB上を秒速2cmで点Aまで移動し、点Qは点Bを出発し辺BC上を秒速3cmで点Cまで移動します。点P, Qが同時に出発したとき、三角形PBQの面積が75平方センチメートルになるのは、出発してから何秒後か求めなさい。 AB = 12cm, BC = 17cm。

幾何学三角形面積方程式速さ直角三角形
2025/7/14

1. 問題の内容

直角三角形ABCにおいて、点Pは点Bを出発し辺AB上を秒速2cmで点Aまで移動し、点Qは点Bを出発し辺BC上を秒速3cmで点Cまで移動します。点P, Qが同時に出発したとき、三角形PBQの面積が75平方センチメートルになるのは、出発してから何秒後か求めなさい。
AB = 12cm, BC = 17cm。

2. 解き方の手順

出発してからの時間を tt 秒とします。
* tt 秒後のPBの長さは 2t2t cmです。
* tt 秒後のBQの長さは 3t3t cmです。
三角形PBQの面積は、12×PB×BQ\frac{1}{2} \times PB \times BQ で表されます。
問題文より、三角形PBQの面積が75平方cmとなるときを求めたいので、以下の方程式を解きます。
12×2t×3t=75\frac{1}{2} \times 2t \times 3t = 75
3t2=753t^2 = 75
t2=25t^2 = 25
t=±5t = \pm 5
時間 tt は正の数なので、t=5t=5 秒後となります。

3. 最終的な答え

5秒後

「幾何学」の関連問題

2点 $(0, \sqrt{2})$、$(0, -\sqrt{2})$ からの距離の和が $2\sqrt{3}$ である点 P の軌跡を E とする。 (1) E の方程式を求めよ。 (2) 第1象限...

楕円軌跡接線面積三角関数
2025/7/14

半径が $x$ cm の円の面積を $y$ cm$^2$ とするとき、以下の問いに答えます。 (1) $y$ を $x$ の式で表してください。 (2) 半径が2倍になると、面積は何倍になるか求めてく...

面積公式代数
2025/7/14

点 $F(0, 2)$ からの距離と、直線 $y = -1$ からの距離の比が $2:1$ であるような点 $P(x, y)$ の軌跡を求める問題です。穴埋め形式になっています。

軌跡双曲線距離座標平面
2025/7/14

直交座標 $(-2, -2\sqrt{3})$ の点の極座標 $(r, \theta)$ を求める問題です。ただし、$\theta$ の範囲は $0 \le \theta < 2\pi$ とします。

極座標座標変換三角関数直交座標
2025/7/14

問題14.2BCの(3)は、原点Oを中心とする座標平面上に点A(2, 0)と点B(-2, 0)がある。点PからAとBまでの距離の積AP * BP = 4を満たす点Pの軌跡をLとする。この軌跡Lの極方程...

軌跡極方程式座標平面最大値距離
2025/7/14

極座標 $(8, \frac{\pi}{3})$ の点を直交座標で表す問題です。

極座標直交座標座標変換三角関数
2025/7/14

図において点Pの座標が$(2, 4, 6)$であるとき、点Cと点Qの座標を求める問題です。

座標空間座標3次元
2025/7/14

原点Oを中心とする半径$r$の円に対し、円の外部の点A(4,0)から2本の接線l, mを引く。接線l, mと円との接点をそれぞれB, Cとする。 (1) $\angle BAC = \frac{\pi...

接線三角関数面積
2025/7/14

(1) $\triangle ABC$ において、$BC=2, A=45^\circ, B=120^\circ$ のとき、$AC$ の長さと外接円の半径を求める。 (2) $\triangle ABC...

三角形正弦定理余弦定理外接円面積
2025/7/14

与えられた2つの二次曲線について、それぞれx軸方向に2、y軸方向に-3だけ平行移動した後の曲線の方程式と焦点を求める問題です。 (1) $\frac{x^2}{4} + \frac{y^2}{9} =...

二次曲線楕円双曲線平行移動焦点
2025/7/14