$\int_{0}^{\frac{\pi}{3}} x\sin(x-\frac{\pi}{3}) dx$ を計算せよ。解析学積分部分積分定積分2025/7/141. 問題の内容∫0π3xsin(x−π3)dx\int_{0}^{\frac{\pi}{3}} x\sin(x-\frac{\pi}{3}) dx∫03πxsin(x−3π)dx を計算せよ。2. 解き方の手順部分積分を用いて計算する。u=xu = xu=x, dv=sin(x−π3)dxdv = \sin(x-\frac{\pi}{3}) dxdv=sin(x−3π)dx とすると、du=dxdu = dxdu=dx, v=−cos(x−π3)v = -\cos(x-\frac{\pi}{3})v=−cos(x−3π) となる。部分積分の公式 ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu を用いると、∫0π3xsin(x−π3)dx=[−xcos(x−π3)]0π3−∫0π3−cos(x−π3)dx\int_{0}^{\frac{\pi}{3}} x\sin(x-\frac{\pi}{3}) dx = \left[ -x\cos(x-\frac{\pi}{3}) \right]_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} -\cos(x-\frac{\pi}{3}) dx∫03πxsin(x−3π)dx=[−xcos(x−3π)]03π−∫03π−cos(x−3π)dx=[−xcos(x−π3)]0π3+∫0π3cos(x−π3)dx= \left[ -x\cos(x-\frac{\pi}{3}) \right]_{0}^{\frac{\pi}{3}} + \int_{0}^{\frac{\pi}{3}} \cos(x-\frac{\pi}{3}) dx=[−xcos(x−3π)]03π+∫03πcos(x−3π)dx=[−xcos(x−π3)]0π3+[sin(x−π3)]0π3= \left[ -x\cos(x-\frac{\pi}{3}) \right]_{0}^{\frac{\pi}{3}} + \left[ \sin(x-\frac{\pi}{3}) \right]_{0}^{\frac{\pi}{3}}=[−xcos(x−3π)]03π+[sin(x−3π)]03π=(−π3cos(0)−(−0cos(−π3)))+(sin(0)−sin(−π3))= \left( -\frac{\pi}{3}\cos(0) - (-0\cos(-\frac{\pi}{3})) \right) + \left( \sin(0) - \sin(-\frac{\pi}{3}) \right)=(−3πcos(0)−(−0cos(−3π)))+(sin(0)−sin(−3π))=(−π3(1)−0)+(0−(−32))= \left( -\frac{\pi}{3}(1) - 0 \right) + \left( 0 - (-\frac{\sqrt{3}}{2}) \right)=(−3π(1)−0)+(0−(−23))=−π3+32= -\frac{\pi}{3} + \frac{\sqrt{3}}{2}=−3π+233. 最終的な答え−π3+32-\frac{\pi}{3} + \frac{\sqrt{3}}{2}−3π+23