定積分 $\int_{0}^{\frac{\pi}{2}} \cos(x - \frac{\pi}{4}) \, dx$ の値を求めよ。解析学定積分三角関数積分2025/7/151. 問題の内容定積分 ∫0π2cos(x−π4) dx\int_{0}^{\frac{\pi}{2}} \cos(x - \frac{\pi}{4}) \, dx∫02πcos(x−4π)dx の値を求めよ。2. 解き方の手順まず、cos(x−π4)\cos(x - \frac{\pi}{4})cos(x−4π) の積分を計算します。cos(x)\cos(x)cos(x) の積分は sin(x)\sin(x)sin(x) であることを利用します。∫cos(x−π4) dx=sin(x−π4)+C\int \cos(x - \frac{\pi}{4}) \, dx = \sin(x - \frac{\pi}{4}) + C∫cos(x−4π)dx=sin(x−4π)+C(Cは積分定数)次に、積分範囲 [0,π2][0, \frac{\pi}{2}][0,2π] で評価します。∫0π2cos(x−π4) dx=[sin(x−π4)]0π2\int_{0}^{\frac{\pi}{2}} \cos(x - \frac{\pi}{4}) \, dx = \left[ \sin(x - \frac{\pi}{4}) \right]_{0}^{\frac{\pi}{2}}∫02πcos(x−4π)dx=[sin(x−4π)]02π=sin(π2−π4)−sin(0−π4)= \sin(\frac{\pi}{2} - \frac{\pi}{4}) - \sin(0 - \frac{\pi}{4})=sin(2π−4π)−sin(0−4π)=sin(π4)−sin(−π4)= \sin(\frac{\pi}{4}) - \sin(-\frac{\pi}{4})=sin(4π)−sin(−4π)sin(π4)=22\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}sin(4π)=22 であり、sin(−π4)=−22\sin(-\frac{\pi}{4}) = -\frac{\sqrt{2}}{2}sin(−4π)=−22 であるから、=22−(−22)= \frac{\sqrt{2}}{2} - (-\frac{\sqrt{2}}{2})=22−(−22)=22+22= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}=22+22=2= \sqrt{2}=23. 最終的な答え2\sqrt{2}2