次の不定積分を計算します。 $\int \left\{ \frac{1}{2\cos^2(\frac{x}{2})} + \tan(\frac{x}{2}) \right\} dx$解析学積分不定積分三角関数置換積分2025/7/151. 問題の内容次の不定積分を計算します。∫{12cos2(x2)+tan(x2)}dx\int \left\{ \frac{1}{2\cos^2(\frac{x}{2})} + \tan(\frac{x}{2}) \right\} dx∫{2cos2(2x)1+tan(2x)}dx2. 解き方の手順まず、積分を分解します。∫{12cos2(x2)+tan(x2)}dx=∫12cos2(x2)dx+∫tan(x2)dx\int \left\{ \frac{1}{2\cos^2(\frac{x}{2})} + \tan(\frac{x}{2}) \right\} dx = \int \frac{1}{2\cos^2(\frac{x}{2})} dx + \int \tan(\frac{x}{2}) dx∫{2cos2(2x)1+tan(2x)}dx=∫2cos2(2x)1dx+∫tan(2x)dxそれぞれの積分を個別に計算します。最初の積分:∫12cos2(x2)dx=12∫1cos2(x2)dx=12∫sec2(x2)dx\int \frac{1}{2\cos^2(\frac{x}{2})} dx = \frac{1}{2} \int \frac{1}{\cos^2(\frac{x}{2})} dx = \frac{1}{2} \int \sec^2(\frac{x}{2}) dx∫2cos2(2x)1dx=21∫cos2(2x)1dx=21∫sec2(2x)dxここで、u=x2u = \frac{x}{2}u=2x と置換すると、du=12dxdu = \frac{1}{2} dxdu=21dx より、dx=2dudx = 2 dudx=2du。12∫sec2(u)(2du)=∫sec2(u)du=tan(u)+C1=tan(x2)+C1\frac{1}{2} \int \sec^2(u) (2 du) = \int \sec^2(u) du = \tan(u) + C_1 = \tan(\frac{x}{2}) + C_121∫sec2(u)(2du)=∫sec2(u)du=tan(u)+C1=tan(2x)+C1次の積分:∫tan(x2)dx=∫sin(x2)cos(x2)dx\int \tan(\frac{x}{2}) dx = \int \frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})} dx∫tan(2x)dx=∫cos(2x)sin(2x)dxここで、v=cos(x2)v = \cos(\frac{x}{2})v=cos(2x) と置換すると、dv=−12sin(x2)dxdv = -\frac{1}{2} \sin(\frac{x}{2}) dxdv=−21sin(2x)dx より、sin(x2)dx=−2dv\sin(\frac{x}{2}) dx = -2 dvsin(2x)dx=−2dv。∫−2vdv=−2∫1vdv=−2ln∣v∣+C2=−2ln∣cos(x2)∣+C2\int \frac{-2}{v} dv = -2 \int \frac{1}{v} dv = -2 \ln|v| + C_2 = -2 \ln|\cos(\frac{x}{2})| + C_2∫v−2dv=−2∫v1dv=−2ln∣v∣+C2=−2ln∣cos(2x)∣+C2したがって、元の積分は次のようになります。∫12cos2(x2)dx+∫tan(x2)dx=tan(x2)−2ln∣cos(x2)∣+C\int \frac{1}{2\cos^2(\frac{x}{2})} dx + \int \tan(\frac{x}{2}) dx = \tan(\frac{x}{2}) - 2 \ln|\cos(\frac{x}{2})| + C∫2cos2(2x)1dx+∫tan(2x)dx=tan(2x)−2ln∣cos(2x)∣+C3. 最終的な答えtan(x2)−2ln∣cos(x2)∣+C\tan(\frac{x}{2}) - 2 \ln|\cos(\frac{x}{2})| + Ctan(2x)−2ln∣cos(2x)∣+C