2次方程式 $-3x^2 + x - k = 0$ が実数解を持たないような $k$ の値の範囲を求めよ。

代数学二次方程式判別式不等式実数解
2025/7/15

1. 問題の内容

2次方程式 3x2+xk=0-3x^2 + x - k = 0 が実数解を持たないような kk の値の範囲を求めよ。

2. 解き方の手順

2次方程式が実数解を持たない条件は、判別式 DD が負であることです。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の判別式 DDD=b24acD = b^2 - 4ac で与えられます。
与えられた2次方程式 3x2+xk=0-3x^2 + x - k = 0 において、a=3,b=1,c=ka = -3, b = 1, c = -k です。
したがって、判別式 DD は次のようになります。
D=124(3)(k)=112kD = 1^2 - 4(-3)(-k) = 1 - 12k
2次方程式が実数解を持たないためには、D<0D < 0 である必要があります。
したがって、次の不等式を解きます。
112k<01 - 12k < 0
1<12k1 < 12k
12k>112k > 1
k>112k > \frac{1}{12}

3. 最終的な答え

k>112k > \frac{1}{12}

「代数学」の関連問題

与えられた2つの式の分母を有理化する問題です。 (1) $\frac{1}{1-\sqrt{2}+\sqrt{3}}$ (2) $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}...

有理化根号式の計算
2025/7/17

与えられた式 $\frac{3x-2}{6} - \frac{2x-3}{9}$ を計算し、最も簡単な形で表す問題です。

分数式の計算代数
2025/7/17

分数式 $\frac{3x-2}{6} - \frac{2x-3}{9}$ を計算し、できる限り簡単にします。

分数計算式の計算
2025/7/17

長さが $x$ m のロープがあり、そのロープを使って囲まれた図形を作る。その図形の面積を $y$ m$^2$ とする。面積 $y$ が最大になるときの $x$ の値を求めよ。ただし、図形の形状は不明...

最大化2次関数面積長方形
2025/7/17

連続する3つの整数があり、最小の数を $x$ とする。 (1) 最小の数の平方と中央の数の平方の和を、$x$ を用いて表し、$ax^2 + bx + 1$ の形にするとき、$a$ と $b$ を求める...

二次方程式整数式の展開因数分解
2025/7/17

家から図書館まで1.2kmの道のりを、最初は毎分50mの速さで歩き、途中から毎分100mの速さで走った。家を出てから15分で図書館に着いたとき、歩いた時間を$x$分、走った時間を$y$分とする。 (1...

連立方程式文章問題距離速さ時間
2025/7/17

与えられた計算問題を解く。問題は以下の4つである。 (1) $6 + 10 \div (-2)$ (2) $3(2x+3) - 2(x-3)$ (3) $4 \times (-3) - (-6) \d...

四則演算一次方程式分数計算分配法則
2025/7/17

ゆかさんが80円のトマトと90円のキウイを合わせて7個買いました。トマトの個数を $x$ とするとき、以下の問いに答えます。 (1) キウイの個数を $x$ を使って表しなさい。 (2) 合計金額が6...

一次方程式文章問題数量関係
2025/7/17

カードを何人かの子供に配る問題で、子供の人数を $x$ 人とします。 (1) 3枚ずつ配ると2枚余る時、カードの枚数を $x$ で表す。 (2) 4枚ずつ配ると6枚足りない時、カードの枚数を $x$ ...

一次方程式文章問題数量関係
2025/7/17

問題文は、ある図形(図は省略されている)の一辺の長さを $x$ m、面積を $y$ m$^2$ とするとき、面積 $y$ が最大になる時の $x$ の値を求める問題です。また、問題文の下には、「アの長...

最大値二次関数長方形平方完成面積
2025/7/17