次の和を求めよ: $1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n-1)(2n+1)$代数学数列シグマ級数和の公式2025/7/151. 問題の内容次の和を求めよ:1⋅3+3⋅5+5⋅7+⋯+(2n−1)(2n+1)1 \cdot 3 + 3 \cdot 5 + 5 \cdot 7 + \dots + (2n-1)(2n+1)1⋅3+3⋅5+5⋅7+⋯+(2n−1)(2n+1)2. 解き方の手順この数列の一般項は ak=(2k−1)(2k+1)a_k = (2k-1)(2k+1)ak=(2k−1)(2k+1) で表されます。したがって、求める和は∑k=1n(2k−1)(2k+1) \sum_{k=1}^n (2k-1)(2k+1) k=1∑n(2k−1)(2k+1)と表せます。まず、一般項を展開します。(2k−1)(2k+1)=4k2−1 (2k-1)(2k+1) = 4k^2 - 1 (2k−1)(2k+1)=4k2−1したがって、求める和は∑k=1n(4k2−1)=4∑k=1nk2−∑k=1n1 \sum_{k=1}^n (4k^2 - 1) = 4\sum_{k=1}^n k^2 - \sum_{k=1}^n 1 k=1∑n(4k2−1)=4k=1∑nk2−k=1∑n1となります。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) と ∑k=1n1=n\sum_{k=1}^n 1 = n∑k=1n1=n であることを利用して、4∑k=1nk2−∑k=1n1=4n(n+1)(2n+1)6−n 4\sum_{k=1}^n k^2 - \sum_{k=1}^n 1 = 4\frac{n(n+1)(2n+1)}{6} - n 4k=1∑nk2−k=1∑n1=46n(n+1)(2n+1)−n=2n(n+1)(2n+1)3−n=2n(n+1)(2n+1)−3n3 = \frac{2n(n+1)(2n+1)}{3} - n = \frac{2n(n+1)(2n+1) - 3n}{3} =32n(n+1)(2n+1)−n=32n(n+1)(2n+1)−3n=n(2(n+1)(2n+1)−3)3=n(2(2n2+3n+1)−3)3 = \frac{n(2(n+1)(2n+1) - 3)}{3} = \frac{n(2(2n^2 + 3n + 1) - 3)}{3} =3n(2(n+1)(2n+1)−3)=3n(2(2n2+3n+1)−3)=n(4n2+6n+2−3)3=n(4n2+6n−1)3 = \frac{n(4n^2 + 6n + 2 - 3)}{3} = \frac{n(4n^2 + 6n - 1)}{3} =3n(4n2+6n+2−3)=3n(4n2+6n−1)3. 最終的な答えn(4n2+6n−1)3\frac{n(4n^2 + 6n - 1)}{3}3n(4n2+6n−1)