点$(-4, 7)$と直線$x + 7y + 5 = 0$との距離を求めます。

幾何学点と直線の距離幾何学数式
2025/7/15

1. 問題の内容

(4,7)(-4, 7)と直線x+7y+5=0x + 7y + 5 = 0との距離を求めます。

2. 解き方の手順

(x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 との距離 dd は、次の公式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題では、x0=4x_0 = -4, y0=7y_0 = 7, a=1a = 1, b=7b = 7, c=5c = 5 です。
これらの値を公式に代入すると、
d=1(4)+77+512+72=4+49+51+49=5050=5050d = \frac{|1 \cdot (-4) + 7 \cdot 7 + 5|}{\sqrt{1^2 + 7^2}} = \frac{|-4 + 49 + 5|}{\sqrt{1 + 49}} = \frac{|50|}{\sqrt{50}} = \frac{50}{\sqrt{50}}
分母を有理化するために、分子と分母に 50\sqrt{50} をかけます。
d=505050=50=252=52d = \frac{50\sqrt{50}}{50} = \sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2}

3. 最終的な答え

525\sqrt{2}

「幾何学」の関連問題

2つの円 $x^2 + y^2 = r^2$ と $x^2 + y^2 - 6x + 4y + 4 = 0$ が異なる2つの共有点をもつような定数 $r$ の値の範囲を求める。ただし、$r > 0$ ...

共有点距離半径不等式
2025/7/16

次の4つの条件を満たす球の方程式を求める問題です。 (1) 中心が$(2, 4, -3)$で半径が$\sqrt{5}$の球 (2) 中心が原点で、点$(3, -2, 1)$を通る球 (3) 中心が点$...

空間図形方程式座標
2025/7/16

2つの円の共有点の座標を求める問題です。円の方程式は以下の通りです。 $x^2 + y^2 = 20$ $x^2 + y^2 - 9x + 3y + 10 = 0$

連立方程式座標交点
2025/7/16

2つの円 $x^2 + y^2 = r^2$ と $x^2 + y^2 - 6x + 4y + 4 = 0$ が異なる2つの共有点を持つような、正の定数 $r$ の値の範囲を求めます。

共有点半径距離
2025/7/16

三角形ABCがあり、内角A, B, C内にある傍心をそれぞれP, Q, Rとする。三角形ABC, PQRの面積をそれぞれS, Tとする。 (1) a = |BC|, b = |CA|, c = |AB...

三角形面積傍接円ヘロンの公式相加相乗平均
2025/7/16

$\triangle ABC$ と点 $P$ について、$\overrightarrow{AP} = \frac{2}{5} \overrightarrow{AB} + \frac{1}{5} \ov...

ベクトル図形問題内分点
2025/7/16

平面上の三角形OABにおいて、辺ABの中点をMとする。ベクトル $\vec{a} = \frac{\vec{OA}}{|\vec{OA}|}$、$\vec{b} = \frac{\vec{OB}}{|...

ベクトル内積平面図形垂線中点
2025/7/16

$xyz$ 座標空間内の3点 $A = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \\ 3 \e...

ベクトル空間ベクトル直線平面ベクトル方程式平面の方程式
2025/7/16

与えられた3つの角度$\theta$について、$\sin \theta$, $\cos \theta$, $\tan \theta$の値をそれぞれ求めます。 (1) $\theta = \frac{5...

三角関数三角比角度弧度法
2025/7/16

$xyz$座標空間内の3点 $A = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \\ 3 \en...

ベクトル空間ベクトル直線平面ベクトル方程式平面の方程式集合
2025/7/16