与えられた式 $a^2 - 12a + 36$ を因数分解してください。

代数学因数分解二次式展開
2025/7/15

1. 問題の内容

与えられた式 a212a+36a^2 - 12a + 36 を因数分解してください。

2. 解き方の手順

与えられた式は二次式です。この式が (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 または (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2 の形になるかどうかを確認します。
a212a+36a^2 - 12a + 36 の場合、a2a^2 の係数は1で、定数項は36です。36は6の二乗なので、b=6b = 6 と考えられます。
もし (a6)2(a - 6)^2 の形になるなら、(a6)2=a22(a)(6)+62=a212a+36(a - 6)^2 = a^2 - 2(a)(6) + 6^2 = a^2 - 12a + 36 となります。
したがって、a212a+36=(a6)2a^2 - 12a + 36 = (a - 6)^2 と因数分解できます。

3. 最終的な答え

(a6)2(a - 6)^2

「代数学」の関連問題

数列 $\{a_n\}$ があり、初項が $a_1 = 3$ で、漸化式 $2a_{n+1} - a_n + 2 = 0$ を満たすとき、この数列の一般項 $a_n$ を求めます。

数列漸化式等比数列特性方程式
2025/7/15

$a$ を定数として、以下の2つの不等式を解く問題です。 (1) $ax - 1 > 0$ (2) $x - 2 > 2a - ax$

不等式一次不等式場合分け数式処理
2025/7/15

定数 $a$ を用いて表された2つの不等式を解く問題です。 (1) $ax + 2 > 0$ (2) $ax - 6 > 2x - 3a$

不等式一次不等式場合分け定数
2025/7/15

与えられた6つの二次関数について、それぞれのグラフの軸と頂点を求める問題です。 (1) $y=x^2-4x$ (2) $y=-x^2+3x-2$ (3) $y=2x^2+8x+12$ (4) $y=-...

二次関数平方完成グラフ頂点
2025/7/15

次の2つの2次関数のグラフを書き、それぞれの軸と頂点を求めなさい。 (1) $y = x^2 + 4x + 3$ (2) $y = -2x^2 + 6x - 1$

二次関数グラフ平方完成頂点
2025/7/15

2次関数 $y = -3(x+2)^2 - 4$ のグラフが、2次関数 $y = ax^2$ のグラフをどのように平行移動したものか、また、軸の方程式と頂点の座標を求める問題です。

二次関数グラフ平行移動頂点
2025/7/15

2次関数 $y=2x^2$ のグラフを平行移動して得られる次の3つの2次関数のグラフについて、どのように平行移動したか、また、それぞれのグラフにおける軸と頂点を求める。 (1) $y=2x^2+1$ ...

二次関数グラフの平行移動頂点
2025/7/15

次の2つの関数について、与えられた定義域における値域を求め、最大値と最小値があればそれらを求めます。 (1) $y = -2x + 3$ ($-1 \le x \le 2$) (2) $y = \fr...

一次関数値域最大値最小値
2025/7/15

与えられた関数の定義域における値域を求め、最大値と最小値があればそれらを求める。 (1) $y = x + 2$ ($0 \le x \le 3$) (2) $y = 4 - 2x$ ($-1 \le...

一次関数値域最大値最小値
2025/7/15

問題は、乗法の公式に関する穴埋め問題です。以下の4つの式を展開する必要があります。 (1) $(x+a)(x+b) = $ (2) $(x+a)^2 = $ (3) $(x-a)^2 = $ (4) ...

展開乗法の公式多項式
2025/7/15