画像に写っている二つの数式、4(a-2)+4 と a²-(a-2)² をそれぞれ計算し、最も簡単な形で表す問題です。

代数学式の計算展開分配法則因数分解
2025/7/15

1. 問題の内容

画像に写っている二つの数式、4(a-2)+4 と a²-(a-2)² をそれぞれ計算し、最も簡単な形で表す問題です。

2. 解き方の手順

まず、一つ目の式 4(a-2)+4 を計算します。
* 分配法則を用いて、4を(a-2)の中のそれぞれの項にかけます。
4(a2)=4a84(a-2) = 4a - 8
* 計算結果に +4 を足します。
4a8+4=4a44a - 8 + 4 = 4a - 4
次に、二つ目の式 a²-(a-2)² を計算します。
* (a-2)² を展開します。
(a2)2=(a2)(a2)=a24a+4(a-2)^2 = (a-2)(a-2) = a^2 - 4a + 4
* a² から展開した式を引きます。
a2(a24a+4)=a2a2+4a4=4a4a^2 - (a^2 - 4a + 4) = a^2 - a^2 + 4a - 4 = 4a - 4

3. 最終的な答え

どちらの式も計算結果は 4a44a - 4 となります。

「代数学」の関連問題

二次方程式 $x^2 + ax - 12 = 0$ の解の一つが $-6$ であるとき、以下の問いに答えます。 (1) $a$ の値を求めます。 (2) もう一つの解を求めます。

二次方程式解の公式因数分解解を求める
2025/7/16

与えられた関数 $y = \sqrt{x^4 + 2x^2 + 2}$ を簡単にする問題です。

関数の簡略化平方根式の変形平方完成
2025/7/16

$a$を定数とする方程式 $x^{\log_{\frac{1}{3}}x} = (\frac{x}{\sqrt[3]{9}})^{-2a}$ が実数解を持ち、さらにそのすべての解が $\sqrt{3}...

指数関数対数関数方程式解の範囲判別式
2025/7/16

$x \ge 2$, $y \ge 2$, $xy = 16$ のとき、$(\log_2 x)(\log_2 y)$ の最大値と最小値を求めよ。また、そのときの $x, y$ の値を求めよ。

対数最大・最小不等式関数
2025/7/16

放物線 $y = ax^2 + bx + 1$ を、$x$軸方向に3、$y$軸方向に$p$だけ平行移動した後、直線 $x = 1$ に関して対称移動したら、放物線 $y = 2x^2 - 4$ に重な...

二次関数放物線平行移動対称移動係数比較
2025/7/16

与えられた行列方程式 $AX=B$ を満たす正方行列 $X$ を求める問題です。ここで、$A = \begin{pmatrix} 1 & -3 & 3 \\ 1 & -2 & 1 \\ -3 & 3 ...

線形代数行列逆行列行列方程式
2025/7/16

与えられた行列の等式を満たす正方行列 $X$ を求める問題です。 具体的には、以下の等式を満たす $X$ を求めます。 $$ \begin{pmatrix} 1 & -3 & 3 \\ 1 & -2 ...

行列逆行列行列式連立方程式
2025/7/16

4x4行列の行列式を求めます。 行列は $ \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \\ 2 & 1 & -1 & 1 \\ 0 & 4 & 1 ...

行列式線形代数余因子展開行列
2025/7/16

問題は、次の式を因数分解することです。 $a^3 + b^3 + c^3 - 3abc$

因数分解多項式
2025/7/16

$ \begin{vmatrix} 0 & 3 & 2 & 1 \\ 1 & 1 & -1 & 2 \\ 2 & 2 & 2 & 0 \\ 4 & 1 & -2 & 3 \end{vmatrix} =...

行列式余因子展開線形代数
2025/7/16