1. 問題の内容
与えられた10個の極限値を求める問題と、1つの展開式の係数を求める問題です。
2. 解き方の手順
(1) limx→0x3tanx−x
tanx=x+3x3+152x5+… を使うと、
limx→0x3(x+3x3+152x5+…)−x=limx→0x33x3+152x5+…=limx→0(31+152x2+…)=31
(2) limx→0(x21−sin2x1)
sinx=x−6x3+120x5−…
sin2x=(x−6x3+120x5−…)2=x2−3x4+452x6−…
sin2x1=x2−3x4+452x6−…1=x21⋅1−3x2+452x4−…1=x21(1+3x2+15x4+…)=x21+31+15x2+…
limx→0(x21−(x21+31+15x2+…))=limx→0(−31−15x2−…)=−31
(3) limx→0x3ex−esinx
ex=1+x+2x2+6x3+…
sinx=x−6x3+…
esinx=1+(x−6x3)+2(x−6x3)2+6(x−6x3)3+⋯=1+x−6x3+2x2−6x4+6x3+⋯=1+x+2x2−6x4+…
limx→0x3(1+x+2x2+6x3+…)−(1+x+2x2−6x4+…)=limx→0x36x3+O(x4)=61
(4) limx→π/2logsinxesinx−e
y=sinx と置くと、x→π/2 のとき y→1
limy→1logyey−e
y=1+h と置くと、y→1 のとき h→0
limh→0log(1+h)e1+h−e=limh→0log(1+h)e(eh−1)=limh→0eheh−1log(1+h)h=e⋅1⋅1=e
(5) limx→11−x+logxxx−x
x=1+h と置くと、x→1 のとき h→0
xx=(1+h)1+h=e(1+h)log(1+h)=e(1+h)(h−2h2+3h3−…)=eh+2h2−6h3+…=1+(h+2h2−6h3)+2(h+2h2)2+⋯=1+h+2h2+2h2+O(h3)=1+h+h2+O(h3)
logx=log(1+h)=h−2h2+3h3−…
limh→01−(1+h)+log(1+h)(1+h)1+h−(1+h)=limh→01−1−h+h−2h2+O(h3)1+h+h2−(1+h)+O(h3)=limh→0−2h2h2=−2
(6) limx→0x(1+x)1/x−e
limx→0(1+x)1/x=e, (1+x)1/x=ex1log(1+x)=ex1(x−2x2+3x3−…)=e1−2x+3x2−…=e⋅e−2x+3x2−…=e(1−2x+3x2+2(−2x)2+…)=e(1−2x+2411x2+…)
limx→0xe(1−2x+2411x2+…)−e=limx→0xe−2ex+2411ex2−e=limx→0x−2ex+2411ex2=−2e
(7) limx→∞x1/x
y=x1/x
logy=xlogx
limx→∞logy=limx→∞xlogx=0
limx→∞y=e0=1
(8) limx→0(2ax+bx)1/x (a, b > 0)
limx→0(2ax+bx)1/x=limx→0ex1log(2ax+bx)
ax=1+xloga+2!(xloga)2+…
bx=1+xlogb+2!(xlogb)2+…
2ax+bx=1+x2loga+logb+2x22(loga)2+(logb)2+…
log(2ax+bx)=log(1+x2loga+logb+2x22(loga)2+(logb)2+…)=x2loga+logb+O(x2)
limx→0x1log(2ax+bx)=limx→0x1(x2loga+logb)=2loga+logb=logab
limx→0(2ax+bx)1/x=elogab=ab
(9) limx→∞{x−x2log(1+x1)}
log(1+x1)=x1−2x21+3x31−…
x−x2log(1+x1)=x−x2(x1−2x21+3x31−…)=x−x+21−3x1+…
limx→∞(x−x2log(1+x1))=limx→∞(21−3x1+…)=21
(10) limx→∞logxlog(1+x1)
limx→∞logxlog(1+x1)=limx→∞logx(x1−2x21+3x31−…)=limx→∞xlogx−2x2logx+⋯=0
1−x1=1+x+x2+⋯+Axn+…よりA=1
3. 最終的な答え
(1) 1/3
(2) -1/3
(3) 1/6
(4) e
(5) -2
(6) -e/2
(7) 1
(8) ab
(9) 1/2
(10) 0
A:1