定積分 $\int_{1}^{2} \sqrt{x^2 + 2x + 5} \, dx$ を計算する問題です。解析学定積分置換積分双曲線関数2025/7/161. 問題の内容定積分 ∫12x2+2x+5 dx\int_{1}^{2} \sqrt{x^2 + 2x + 5} \, dx∫12x2+2x+5dx を計算する問題です。2. 解き方の手順まず、根号の中身を平方完成します。x2+2x+5=(x2+2x+1)+4=(x+1)2+4x^2 + 2x + 5 = (x^2 + 2x + 1) + 4 = (x+1)^2 + 4x2+2x+5=(x2+2x+1)+4=(x+1)2+4したがって、積分は∫12(x+1)2+4 dx\int_{1}^{2} \sqrt{(x+1)^2 + 4} \, dx∫12(x+1)2+4dxとなります。ここで、x+1=2sinh(u)x+1 = 2\sinh(u)x+1=2sinh(u) と置換します。すると、dx=2cosh(u) dudx = 2\cosh(u) \, dudx=2cosh(u)du となります。置換積分の範囲も変更する必要があります。x=1x = 1x=1 のとき、2=2sinh(u)2 = 2\sinh(u)2=2sinh(u) なので、sinh(u)=1\sinh(u) = 1sinh(u)=1、つまり u=sinh−1(1)u = \sinh^{-1}(1)u=sinh−1(1)x=2x = 2x=2 のとき、3=2sinh(u)3 = 2\sinh(u)3=2sinh(u) なので、sinh(u)=32\sinh(u) = \frac{3}{2}sinh(u)=23、つまり u=sinh−1(32)u = \sinh^{-1}(\frac{3}{2})u=sinh−1(23)置換積分を実行すると、∫sinh−1(1)sinh−1(32)4sinh2(u)+4⋅2cosh(u) du=∫sinh−1(1)sinh−1(32)2sinh2(u)+1⋅2cosh(u) du\int_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})} \sqrt{4\sinh^2(u) + 4} \cdot 2\cosh(u) \, du = \int_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})} 2\sqrt{\sinh^2(u) + 1} \cdot 2\cosh(u) \, du∫sinh−1(1)sinh−1(23)4sinh2(u)+4⋅2cosh(u)du=∫sinh−1(1)sinh−1(23)2sinh2(u)+1⋅2cosh(u)dusinh2(u)+1=cosh2(u)\sinh^2(u) + 1 = \cosh^2(u)sinh2(u)+1=cosh2(u) より、∫sinh−1(1)sinh−1(32)4cosh2(u) du\int_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})} 4\cosh^2(u) \, du∫sinh−1(1)sinh−1(23)4cosh2(u)ducosh2(u)=1+cosh(2u)2\cosh^2(u) = \frac{1 + \cosh(2u)}{2}cosh2(u)=21+cosh(2u) なので、∫sinh−1(1)sinh−1(32)4⋅1+cosh(2u)2 du=∫sinh−1(1)sinh−1(32)2(1+cosh(2u)) du\int_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})} 4 \cdot \frac{1 + \cosh(2u)}{2} \, du = \int_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})} 2(1 + \cosh(2u)) \, du∫sinh−1(1)sinh−1(23)4⋅21+cosh(2u)du=∫sinh−1(1)sinh−1(23)2(1+cosh(2u))du=[2u+sinh(2u)]sinh−1(1)sinh−1(32)= [2u + \sinh(2u)]_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})}=[2u+sinh(2u)]sinh−1(1)sinh−1(23)sinh(2u)=2sinh(u)cosh(u)\sinh(2u) = 2\sinh(u)\cosh(u)sinh(2u)=2sinh(u)cosh(u) より、[2u+2sinh(u)cosh(u)]sinh−1(1)sinh−1(32)[2u + 2\sinh(u)\cosh(u)]_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})}[2u+2sinh(u)cosh(u)]sinh−1(1)sinh−1(23)cosh(u)=sinh2(u)+1\cosh(u) = \sqrt{\sinh^2(u) + 1}cosh(u)=sinh2(u)+1 より、cosh(sinh−1(1))=12+1=2\cosh(\sinh^{-1}(1)) = \sqrt{1^2 + 1} = \sqrt{2}cosh(sinh−1(1))=12+1=2cosh(sinh−1(32))=(32)2+1=94+1=134=132\cosh(\sinh^{-1}(\frac{3}{2})) = \sqrt{(\frac{3}{2})^2 + 1} = \sqrt{\frac{9}{4} + 1} = \sqrt{\frac{13}{4}} = \frac{\sqrt{13}}{2}cosh(sinh−1(23))=(23)2+1=49+1=413=213従って、[2u+2sinh(u)cosh(u)]sinh−1(1)sinh−1(32)=[2sinh−1(u)+2sinh(u)sinh2(u)+1]sinh−1(1)sinh−1(32)[2u + 2\sinh(u)\cosh(u)]_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})} = [2\sinh^{-1}(u) + 2\sinh(u)\sqrt{\sinh^2(u)+1}]_{\sinh^{-1}(1)}^{\sinh^{-1}(\frac{3}{2})}[2u+2sinh(u)cosh(u)]sinh−1(1)sinh−1(23)=[2sinh−1(u)+2sinh(u)sinh2(u)+1]sinh−1(1)sinh−1(23)=[2sinh−1(u)+2(x+1)/2((x+1)/2)2+1]12=[2sinh−1((x+1)/2)+(x+1)((x+1)/2)2+1]12= [2\sinh^{-1}(u) + 2(x+1)/2 \sqrt{((x+1)/2)^2+1}]_{1}^{2} = [2\sinh^{-1}((x+1)/2) + (x+1)\sqrt{((x+1)/2)^2+1}]_{1}^{2}=[2sinh−1(u)+2(x+1)/2((x+1)/2)2+1]12=[2sinh−1((x+1)/2)+(x+1)((x+1)/2)2+1]12=[2sinh−1((x+1)/2)+x+12(x+1)2+4]12= [2\sinh^{-1}((x+1)/2) + \frac{x+1}{2} \sqrt{(x+1)^2+4}]_{1}^{2}=[2sinh−1((x+1)/2)+2x+1(x+1)2+4]12=[2sinh−1((x+1)/2)+x+12x2+2x+5]12= [2\sinh^{-1}((x+1)/2) + \frac{x+1}{2} \sqrt{x^2+2x+5}]_{1}^{2}=[2sinh−1((x+1)/2)+2x+1x2+2x+5]12=2sinh−1(32)+3213−2sinh−1(1)−8= 2\sinh^{-1}(\frac{3}{2}) + \frac{3}{2}\sqrt{13} - 2\sinh^{-1}(1) - \sqrt{8}=2sinh−1(23)+2313−2sinh−1(1)−8=2sinh−1(32)+3132−2sinh−1(1)−22= 2\sinh^{-1}(\frac{3}{2}) + \frac{3\sqrt{13}}{2} - 2\sinh^{-1}(1) - 2\sqrt{2}=2sinh−1(23)+2313−2sinh−1(1)−223. 最終的な答え2sinh−1(32)+3132−2sinh−1(1)−222\sinh^{-1}(\frac{3}{2}) + \frac{3\sqrt{13}}{2} - 2\sinh^{-1}(1) - 2\sqrt{2}2sinh−1(23)+2313−2sinh−1(1)−22もしくは2ln(32+94+1)+3132−2ln(1+2)−22=2ln(3+132)+3132−2ln(1+2)−222\ln(\frac{3}{2} + \sqrt{\frac{9}{4} + 1}) + \frac{3\sqrt{13}}{2} - 2\ln(1+\sqrt{2}) - 2\sqrt{2} = 2\ln(\frac{3+\sqrt{13}}{2}) + \frac{3\sqrt{13}}{2} - 2\ln(1+\sqrt{2}) - 2\sqrt{2}2ln(23+49+1)+2313−2ln(1+2)−22=2ln(23+13)+2313−2ln(1+2)−22≈4.7641\approx 4.7641≈4.7641