定積分 $\int_{0}^{\frac{\pi}{4}} (x^2+1)\cos2x \, dx$ を計算します。解析学定積分部分積分三角関数2025/7/161. 問題の内容定積分 ∫0π4(x2+1)cos2x dx\int_{0}^{\frac{\pi}{4}} (x^2+1)\cos2x \, dx∫04π(x2+1)cos2xdx を計算します。2. 解き方の手順まず、部分積分を用いて積分を計算します。∫(x2+1)cos2x dx\int (x^2+1)\cos2x \, dx∫(x2+1)cos2xdx を計算するために、まず x2+1=ux^2+1 = ux2+1=u と cos2x=v′\cos2x = v'cos2x=v′ とおきます。すると、 u′=2xu' = 2xu′=2x であり、 v=12sin2xv = \frac{1}{2}\sin2xv=21sin2x です。部分積分の公式 ∫uv′ dx=uv−∫u′v dx\int u v' \, dx = uv - \int u' v \, dx∫uv′dx=uv−∫u′vdx を用いると、∫(x2+1)cos2x dx=(x2+1)12sin2x−∫2x⋅12sin2x dx=12(x2+1)sin2x−∫xsin2x dx\int (x^2+1)\cos2x \, dx = (x^2+1)\frac{1}{2}\sin2x - \int 2x \cdot \frac{1}{2}\sin2x \, dx = \frac{1}{2}(x^2+1)\sin2x - \int x\sin2x \, dx∫(x2+1)cos2xdx=(x2+1)21sin2x−∫2x⋅21sin2xdx=21(x2+1)sin2x−∫xsin2xdx次に、∫xsin2x dx\int x\sin2x \, dx∫xsin2xdx を部分積分で計算します。x=ux = ux=u と sin2x=v′\sin2x = v'sin2x=v′ とおくと、 u′=1u' = 1u′=1 であり、 v=−12cos2xv = -\frac{1}{2}\cos2xv=−21cos2x です。∫xsin2x dx=x(−12cos2x)−∫1(−12cos2x) dx=−12xcos2x+12∫cos2x dx=−12xcos2x+12⋅12sin2x=−12xcos2x+14sin2x\int x\sin2x \, dx = x(-\frac{1}{2}\cos2x) - \int 1(-\frac{1}{2}\cos2x) \, dx = -\frac{1}{2}x\cos2x + \frac{1}{2}\int \cos2x \, dx = -\frac{1}{2}x\cos2x + \frac{1}{2}\cdot \frac{1}{2}\sin2x = -\frac{1}{2}x\cos2x + \frac{1}{4}\sin2x∫xsin2xdx=x(−21cos2x)−∫1(−21cos2x)dx=−21xcos2x+21∫cos2xdx=−21xcos2x+21⋅21sin2x=−21xcos2x+41sin2xしたがって、∫(x2+1)cos2x dx=12(x2+1)sin2x−(−12xcos2x+14sin2x)=12(x2+1)sin2x+12xcos2x−14sin2x=12x2sin2x+12sin2x+12xcos2x−14sin2x=12x2sin2x+14sin2x+12xcos2x\int (x^2+1)\cos2x \, dx = \frac{1}{2}(x^2+1)\sin2x - (-\frac{1}{2}x\cos2x + \frac{1}{4}\sin2x) = \frac{1}{2}(x^2+1)\sin2x + \frac{1}{2}x\cos2x - \frac{1}{4}\sin2x = \frac{1}{2}x^2\sin2x + \frac{1}{2}\sin2x + \frac{1}{2}x\cos2x - \frac{1}{4}\sin2x = \frac{1}{2}x^2\sin2x + \frac{1}{4}\sin2x + \frac{1}{2}x\cos2x∫(x2+1)cos2xdx=21(x2+1)sin2x−(−21xcos2x+41sin2x)=21(x2+1)sin2x+21xcos2x−41sin2x=21x2sin2x+21sin2x+21xcos2x−41sin2x=21x2sin2x+41sin2x+21xcos2x∫0π4(x2+1)cos2x dx=[12x2sin2x+14sin2x+12xcos2x]0π4=12(π4)2sin(π2)+14sin(π2)+12(π4)cos(π2)−(0+0+0)=12(π216)(1)+14(1)+12(π4)(0)=π232+14\int_{0}^{\frac{\pi}{4}} (x^2+1)\cos2x \, dx = [\frac{1}{2}x^2\sin2x + \frac{1}{4}\sin2x + \frac{1}{2}x\cos2x]_{0}^{\frac{\pi}{4}} = \frac{1}{2}(\frac{\pi}{4})^2\sin(\frac{\pi}{2}) + \frac{1}{4}\sin(\frac{\pi}{2}) + \frac{1}{2}(\frac{\pi}{4})\cos(\frac{\pi}{2}) - (0+0+0) = \frac{1}{2}(\frac{\pi^2}{16})(1) + \frac{1}{4}(1) + \frac{1}{2}(\frac{\pi}{4})(0) = \frac{\pi^2}{32} + \frac{1}{4}∫04π(x2+1)cos2xdx=[21x2sin2x+41sin2x+21xcos2x]04π=21(4π)2sin(2π)+41sin(2π)+21(4π)cos(2π)−(0+0+0)=21(16π2)(1)+41(1)+21(4π)(0)=32π2+413. 最終的な答えπ232+14\frac{\pi^2}{32} + \frac{1}{4}32π2+41