$y = \arctan(\frac{u}{u})$ の微分を求める問題です。ここで、$\arctan(x)$は逆正接関数です。

解析学微分逆正接関数導関数
2025/7/16

1. 問題の内容

y=arctan(uu)y = \arctan(\frac{u}{u}) の微分を求める問題です。ここで、arctan(x)\arctan(x)は逆正接関数です。

2. 解き方の手順

まず、与えられた関数を簡略化します。uu=1\frac{u}{u} = 1 (ただし、u0u \ne 0)なので、
y=arctan(1)y = \arctan(1)
となります。
次に、y=arctan(1)y = \arctan(1)を微分します。arctan(1)\arctan(1)は定数なので、その微分は0です。
dydu=dduarctan(1)=0\frac{dy}{du} = \frac{d}{du} \arctan(1) = 0

3. 最終的な答え

0

「解析学」の関連問題

関数 $y = x^{\cos^{-1}(3x)}$ の微分を求める問題です。

微分合成関数対数微分法逆三角関数
2025/7/16

関数 $y = (x^2 + 1)^{x+1}$ の導関数を求める問題です。

導関数対数微分法積の微分合成関数の微分微分
2025/7/16

与えられた関数 $y=e^{\sqrt{x}}$ の微分 $dy/dx$ を求める問題です。

微分合成関数の微分指数関数連鎖律
2025/7/16

画像に写っている関数 $y = 2^{x^2}$ の導関数を求める問題です。

微分合成関数指数関数
2025/7/16

与えられた関数 $y = x^{\frac{1}{x}}$ の微分 $\frac{dy}{dx}$ を求める問題です。

微分対数微分関数の微分
2025/7/16

与えられた関数 $y = x^{\cos^{-1}(3x)}$ の導関数 $\frac{dy}{dx}$ を求める問題です。

微分導関数対数微分法合成関数の微分逆三角関数
2025/7/16

数列 $\frac{1}{2}, \frac{1}{2^2}, \frac{3}{2^2}, \frac{1}{2^3}, \frac{3}{2^3}, \frac{5}{2^3}, \frac{7}...

数列等比数列無限数列級数
2025/7/16

与えられた関数を微分する問題です。具体的には、以下の4つの関数 $y$ を $x$ で微分します。 (1) $y = -\frac{3}{2x^2}$ (2) $y = \frac{1}{x} - \...

微分関数の微分
2025/7/16

$\Omega = \{(x_1, x_2) : x_1 > -1, x_2 \in \mathbb{R} \} \subset \mathbb{R}^2$ とし、 関数 $f(x_1, x_2) =...

多変数関数偏微分臨界点ヘッセ行列局所最大・最小
2025/7/16

次の6つの関数を微分します。 (1) $y = \frac{1}{x+3}$ (2) $y = \frac{3}{4-x}$ (3) $y = -\frac{5}{x^2+7}$ (4) $y = \...

微分関数の微分連鎖律商の微分法
2025/7/16