台形ABCDにおいて、AD // BCであり、ACの中点がE、DEとBCの交点がFである。このとき、四角形AFCDが平行四辺形であることを証明する穴埋め問題。

幾何学幾何台形平行四辺形証明相似
2025/7/16

1. 問題の内容

台形ABCDにおいて、AD // BCであり、ACの中点がE、DEとBCの交点がFである。このとき、四角形AFCDが平行四辺形であることを証明する穴埋め問題。

2. 解き方の手順

ア:仮定より、EはACの中点なので、AE=CEAE = CE
イ:AD // BCより、平行線の錯角は等しいので
ウ:DAE=ECF\angle DAE = \angle ECF
エ:ADE\triangle ADECFE\triangle CFEにおいて、AE=CEAE = CE, DAE=ECF\angle DAE = \angle ECF, AED=CEF\angle AED = \angle CEFより、1組の辺とその両端の角がそれぞれ等しいので、ADECFE\triangle ADE \equiv \triangle CFE
オ:ADECFE\triangle ADE \equiv \triangle CFEより、AD=CFAD = CF。また、問題文よりDE=FEDE = FEが成り立つ。したがって、①と④より、AD=CFAD = CFであり、DE=FEDE = FE。よって、1組の対辺が平行で長さが等しいから、四角形AFCDは平行四辺形である。

3. 最終的な答え

ア:AE=CEAE = CE
イ:錯角
ウ:DAEDAE
エ:1組の辺とその両端の角
オ:AD=CFAD = CFであり、DE=FEDE = FE

「幾何学」の関連問題

長方形ABCDがあり、AB = 14cm, AD = 12cmである。辺AD上に点P、辺CD上に点Qがあり、PD = QCとなっている。三角形PQDの面積が20cm^2であるとき、線分PDの長さを求め...

面積長方形三角形二次方程式図形
2025/7/16

14m離れた2地点から三重塔の仰角を測定したところ、それぞれ45°と30°であった。このとき、三重塔の高さH[m]を求める。ただし、$\sqrt{2} = 1.4$, $\sqrt{3} = 1.7$...

三角比仰角高さ三角関数
2025/7/16

14m離れた2地点から塔の仰角を測ったところ、それぞれ30°と45°であった。塔の高さH[m]を求めよ。ただし、$\sqrt{2}=1.4$, $\sqrt{3}=1.7$とする。

三角比仰角三角関数高さ
2025/7/16

直線 $y = 2x + 1$ に対して、点 $(3, 1)$ と線対称の位置にある点 $(a, b)$ を求める問題です。つまり、$a$ と $b$ の値を求める必要があります。

線対称座標平面直線連立方程式
2025/7/16

直線 $y = 2x + 1$ に関して、点 $(3, 1)$ と線対称な点の座標 $(a, b)$ を求める問題です。

線対称座標平面直線連立方程式
2025/7/16

直線 $y=2x+1$ に関して、点 $(3, 1)$ と線対称な点の座標 $(a, b)$ を求めよ。

線対称座標平面直線連立方程式
2025/7/16

$\alpha$ と $\beta$ は鈍角であり、$tan\alpha = -\frac{4}{3}$、$cos\beta = -\frac{1}{\sqrt{2}}$ のとき、$cos(\alph...

三角関数加法定理三角比角度
2025/7/16

放物線 $y = ax^2$ ($a > 0$)上に点A, Bがあり、A, Bのx座標はそれぞれ-1, 2である。原点をOとする。三角形OABの面積が9のとき、以下の問いに答える。 (1) aの値を求...

放物線面積座標直線代数
2025/7/16

直線 $y=2x+1$ において、点 $(3, 1)$ と線対称の位置にある点を $(a, b)$ とする。$a, b$ の値を求めよ。

線対称座標平面直線の方程式連立方程式
2025/7/16

直線 $y = 2x + 1$ に関して、点 $(3, 1)$ と線対称の位置にある点 $(a, b)$ を求めよ。つまり、$a$ と $b$ の値を求めよ。

線対称座標直線傾き
2025/7/16