定積分 $\int_{0}^{\sqrt{2}} \frac{x^2}{\sqrt{2-x^2}} dx$ を計算します。解析学定積分置換積分三角関数積分計算2025/7/161. 問題の内容定積分 ∫02x22−x2dx\int_{0}^{\sqrt{2}} \frac{x^2}{\sqrt{2-x^2}} dx∫022−x2x2dx を計算します。2. 解き方の手順まず、x=2sinθx = \sqrt{2}\sin{\theta}x=2sinθ と置換します。すると、dx=2cosθdθdx = \sqrt{2}\cos{\theta} d\thetadx=2cosθdθ となります。積分範囲も変化します。x=0x = 0x=0 のとき θ=0\theta = 0θ=0 であり、x=2x = \sqrt{2}x=2 のとき θ=π2\theta = \frac{\pi}{2}θ=2π となります。したがって、積分は次のようになります。∫02x22−x2dx=∫0π/2(2sinθ)22−(2sinθ)22cosθdθ\int_{0}^{\sqrt{2}} \frac{x^2}{\sqrt{2-x^2}} dx = \int_{0}^{\pi/2} \frac{(\sqrt{2}\sin{\theta})^2}{\sqrt{2-(\sqrt{2}\sin{\theta})^2}} \sqrt{2}\cos{\theta} d\theta∫022−x2x2dx=∫0π/22−(2sinθ)2(2sinθ)22cosθdθ=∫0π/22sin2θ2−2sin2θ2cosθdθ= \int_{0}^{\pi/2} \frac{2\sin^2{\theta}}{\sqrt{2-2\sin^2{\theta}}} \sqrt{2}\cos{\theta} d\theta=∫0π/22−2sin2θ2sin2θ2cosθdθ=∫0π/22sin2θ2(1−sin2θ)2cosθdθ= \int_{0}^{\pi/2} \frac{2\sin^2{\theta}}{\sqrt{2(1-\sin^2{\theta})}} \sqrt{2}\cos{\theta} d\theta=∫0π/22(1−sin2θ)2sin2θ2cosθdθ=∫0π/22sin2θ2cosθ2cosθdθ= \int_{0}^{\pi/2} \frac{2\sin^2{\theta}}{\sqrt{2}\cos{\theta}} \sqrt{2}\cos{\theta} d\theta=∫0π/22cosθ2sin2θ2cosθdθ=∫0π/22sin2θdθ= \int_{0}^{\pi/2} 2\sin^2{\theta} d\theta=∫0π/22sin2θdθここで、sin2θ=1−cos2θ2\sin^2{\theta} = \frac{1-\cos{2\theta}}{2}sin2θ=21−cos2θ を用いると、∫0π/22sin2θdθ=∫0π/22(1−cos2θ2)dθ\int_{0}^{\pi/2} 2\sin^2{\theta} d\theta = \int_{0}^{\pi/2} 2\left(\frac{1-\cos{2\theta}}{2}\right) d\theta∫0π/22sin2θdθ=∫0π/22(21−cos2θ)dθ=∫0π/2(1−cos2θ)dθ= \int_{0}^{\pi/2} (1-\cos{2\theta}) d\theta=∫0π/2(1−cos2θ)dθ=[θ−12sin2θ]0π/2= \left[\theta - \frac{1}{2}\sin{2\theta}\right]_{0}^{\pi/2}=[θ−21sin2θ]0π/2=(π2−12sinπ)−(0−12sin0)= \left(\frac{\pi}{2} - \frac{1}{2}\sin{\pi}\right) - \left(0 - \frac{1}{2}\sin{0}\right)=(2π−21sinπ)−(0−21sin0)=π2−0−0+0= \frac{\pi}{2} - 0 - 0 + 0=2π−0−0+0=π2= \frac{\pi}{2}=2π3. 最終的な答えπ2\frac{\pi}{2}2π