定積分 $\int_{1}^{2} \log(x^3 + x^2) dx$ を計算します。解析学定積分部分積分対数関数2025/7/161. 問題の内容定積分 ∫12log(x3+x2)dx\int_{1}^{2} \log(x^3 + x^2) dx∫12log(x3+x2)dx を計算します。2. 解き方の手順まず、積分を計算するために、被積分関数を変形します。log(x3+x2)=log(x2(x+1))=log(x2)+log(x+1)=2log(x)+log(x+1)\log(x^3 + x^2) = \log(x^2(x+1)) = \log(x^2) + \log(x+1) = 2\log(x) + \log(x+1)log(x3+x2)=log(x2(x+1))=log(x2)+log(x+1)=2log(x)+log(x+1)したがって、∫12log(x3+x2)dx=∫12(2log(x)+log(x+1))dx=2∫12log(x)dx+∫12log(x+1)dx\int_{1}^{2} \log(x^3 + x^2) dx = \int_{1}^{2} (2\log(x) + \log(x+1)) dx = 2\int_{1}^{2} \log(x) dx + \int_{1}^{2} \log(x+1) dx∫12log(x3+x2)dx=∫12(2log(x)+log(x+1))dx=2∫12log(x)dx+∫12log(x+1)dx∫log(x)dx\int \log(x) dx∫log(x)dx は部分積分で計算できます。u=log(x),dv=dxu = \log(x), dv = dxu=log(x),dv=dx とすると、du=1xdx,v=xdu = \frac{1}{x}dx, v = xdu=x1dx,v=x となります。したがって、∫log(x)dx=xlog(x)−∫x⋅1xdx=xlog(x)−∫1dx=xlog(x)−x+C\int \log(x) dx = x\log(x) - \int x \cdot \frac{1}{x} dx = x\log(x) - \int 1 dx = x\log(x) - x + C∫log(x)dx=xlog(x)−∫x⋅x1dx=xlog(x)−∫1dx=xlog(x)−x+C∫log(x+1)dx\int \log(x+1) dx∫log(x+1)dx も部分積分で計算できます。u=log(x+1),dv=dxu = \log(x+1), dv = dxu=log(x+1),dv=dx とすると、du=1x+1dx,v=xdu = \frac{1}{x+1}dx, v = xdu=x+11dx,v=x となります。したがって、∫log(x+1)dx=xlog(x+1)−∫xx+1dx=xlog(x+1)−∫x+1−1x+1dx=xlog(x+1)−∫(1−1x+1)dx=xlog(x+1)−(x−log(x+1))+C=xlog(x+1)−x+log(x+1)+C=(x+1)log(x+1)−x+C\int \log(x+1) dx = x\log(x+1) - \int \frac{x}{x+1} dx = x\log(x+1) - \int \frac{x+1-1}{x+1} dx = x\log(x+1) - \int (1 - \frac{1}{x+1}) dx = x\log(x+1) - (x - \log(x+1)) + C = x\log(x+1) - x + \log(x+1) + C = (x+1)\log(x+1) - x + C∫log(x+1)dx=xlog(x+1)−∫x+1xdx=xlog(x+1)−∫x+1x+1−1dx=xlog(x+1)−∫(1−x+11)dx=xlog(x+1)−(x−log(x+1))+C=xlog(x+1)−x+log(x+1)+C=(x+1)log(x+1)−x+Cしたがって、∫12log(x)dx=[xlog(x)−x]12=(2log(2)−2)−(1log(1)−1)=2log(2)−2−(0−1)=2log(2)−1\int_{1}^{2} \log(x) dx = [x\log(x) - x]_{1}^{2} = (2\log(2) - 2) - (1\log(1) - 1) = 2\log(2) - 2 - (0 - 1) = 2\log(2) - 1∫12log(x)dx=[xlog(x)−x]12=(2log(2)−2)−(1log(1)−1)=2log(2)−2−(0−1)=2log(2)−1∫12log(x+1)dx=[(x+1)log(x+1)−x]12=(3log(3)−2)−(2log(2)−1)=3log(3)−2log(2)−1\int_{1}^{2} \log(x+1) dx = [(x+1)\log(x+1) - x]_{1}^{2} = (3\log(3) - 2) - (2\log(2) - 1) = 3\log(3) - 2\log(2) - 1∫12log(x+1)dx=[(x+1)log(x+1)−x]12=(3log(3)−2)−(2log(2)−1)=3log(3)−2log(2)−1したがって、2∫12log(x)dx+∫12log(x+1)dx=2(2log(2)−1)+(3log(3)−2log(2)−1)=4log(2)−2+3log(3)−2log(2)−1=2log(2)+3log(3)−32\int_{1}^{2} \log(x) dx + \int_{1}^{2} \log(x+1) dx = 2(2\log(2) - 1) + (3\log(3) - 2\log(2) - 1) = 4\log(2) - 2 + 3\log(3) - 2\log(2) - 1 = 2\log(2) + 3\log(3) - 32∫12log(x)dx+∫12log(x+1)dx=2(2log(2)−1)+(3log(3)−2log(2)−1)=4log(2)−2+3log(3)−2log(2)−1=2log(2)+3log(3)−33. 最終的な答え2log2+3log3−32\log 2 + 3\log 3 - 32log2+3log3−3