ある水族館の入館料について、中学生5人と大人3人、または中学生2人と大人4人で入場するとどちらも2800円かかる。中学生1人と大人1人の入館料をそれぞれ求める。

代数学連立方程式文章問題方程式
2025/7/16

1. 問題の内容

ある水族館の入館料について、中学生5人と大人3人、または中学生2人と大人4人で入場するとどちらも2800円かかる。中学生1人と大人1人の入館料をそれぞれ求める。

2. 解き方の手順

中学生1人の入館料を xx 円、大人1人の入館料を yy 円とする。
問題文より、以下の2つの式が成り立つ。
5x+3y=28005x + 3y = 2800
2x+4y=28002x + 4y = 2800
この連立方程式を解く。
まず、2つ目の式を2で割って簡単にする。
x+2y=1400x + 2y = 1400
次に、1つ目の式から2つ目の式を5倍したものを引く。
5x+3y5(x+2y)=28005(1400)5x + 3y - 5(x + 2y) = 2800 - 5(1400)
5x+3y5x10y=280070005x + 3y - 5x - 10y = 2800 - 7000
7y=4200-7y = -4200
y=600y = 600
求めた yy の値を x+2y=1400x + 2y = 1400 に代入する。
x+2(600)=1400x + 2(600) = 1400
x+1200=1400x + 1200 = 1400
x=200x = 200

3. 最終的な答え

中学生1人の入館料は200円、大人1人の入館料は600円。

「代数学」の関連問題

次の式の値を計算し、$\square + \square \sqrt{\square}$ の形式で表す問題です。 $\frac{1}{2-\sqrt{3}} + \frac{\sqrt{3}+1}{\...

式の計算分母の有理化平方根
2025/7/16

数列$\{a_n\}$の初項から第$n$項までの和を$S_n = (n+1)^2$とするとき、以下の問いに答えます。 (1) 一般項$a_n$を求めます。 (2) $\sum_{k=1}^{n} \f...

数列級数一般項和の公式
2025/7/16

$a_1, ..., a_n, b$ を $\mathbb{R}^m$ のベクトルとし、$A = [a_1, ..., a_n]$ を $m \times n$ 行列とします。このとき、以下の3つの条...

線形代数ベクトル行列一次結合次元同値性連立方程式
2025/7/16

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ が与えられたとき、$\mathbb{R}^n$ のある基底 $\{a_1, \dots, a_n\}$ と $\math...

線形写像表現行列基底標準形線形代数
2025/7/16

線形写像 $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ が与えられたとき、$\mathbb{R}^n$ のある基底 $\{a_1, ..., a_n\}$ と ...

線形代数線形写像表現行列基底標準形ランク
2025/7/16

$f: \mathbb{R}^n \to \mathbb{R}^m$ を任意の線形写像とします。このとき、$\mathbb{R}^n$ のある基底 $\{a_1, \dots, a_n\}$ と $\...

線形写像線形代数基底表現行列標準形
2025/7/16

与えられた行列の等式 $AX = B$ を満たす正方行列 $X$ を求める問題です。ここで、$A = \begin{pmatrix} 1 & -3 & 3 \\ 1 & -2 & 1 \\ -3 & ...

線形代数行列逆行列連立一次方程式
2025/7/16

線形変換 $f: \mathbb{R}^n \to \mathbb{R}^n$ について、以下の2点を証明する問題です。 (1) $f$ が単射であることと全射であることは同値である。 (2) $f$...

線形変換単射全射逆写像線形写像線形代数ランク・ヌラリティ定理
2025/7/16

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ と $\mathbb{R}^m$ の基底 $\{b_1, \dots, b_m\}$ について、$f(a_i) = b_...

線形写像線形代数全射一次独立ベクトル空間
2025/7/16

与えられた関数 $y = \sqrt{x^4 + 2x^2 + 2}$ をできる限り簡単にします。

関数の簡素化平方根平方完成
2025/7/16