ある店の商品Aは、売り値が60円のときは1日に400個売れる。売り値を60円から1円値上げするごとに、1日に売れる個数が5個ずつ減少する。商品Aの売り値が60円以上として、1日の売り上げ高が最大になるのはいくらかを求める。

代数学二次関数最大値最適化平方完成
2025/7/16

1. 問題の内容

ある店の商品Aは、売り値が60円のときは1日に400個売れる。売り値を60円から1円値上げするごとに、1日に売れる個数が5個ずつ減少する。商品Aの売り値が60円以上として、1日の売り上げ高が最大になるのはいくらかを求める。

2. 解き方の手順

売り値を xx 円とすると、値上げ額は x60x-60 円。
売れる個数は 4005(x60)400 - 5(x-60) 個。
売り上げ高を yy 円とすると、
y=x(4005(x60))y = x(400 - 5(x-60))
y=x(4005x+300)y = x(400 - 5x + 300)
y=x(7005x)y = x(700 - 5x)
y=700x5x2y = 700x - 5x^2
これは xx の2次関数であり、上に凸のグラフになる。最大値を求めるために、平方完成を行う。
y=5(x2140x)y = -5(x^2 - 140x)
y=5(x2140x+49004900)y = -5(x^2 - 140x + 4900 - 4900)
y=5((x70)24900)y = -5((x - 70)^2 - 4900)
y=5(x70)2+24500y = -5(x - 70)^2 + 24500
yyx=70x = 70 のときに最大値 24500 をとる。

3. 最終的な答え

70円

「代数学」の関連問題

与えられた行列の等式 $AX = B$ を満たす正方行列 $X$ を求める問題です。ここで、$A = \begin{pmatrix} 1 & -3 & 3 \\ 1 & -2 & 1 \\ -3 & ...

線形代数行列逆行列連立一次方程式
2025/7/16

線形変換 $f: \mathbb{R}^n \to \mathbb{R}^n$ について、以下の2点を証明する問題です。 (1) $f$ が単射であることと全射であることは同値である。 (2) $f$...

線形変換単射全射逆写像線形写像線形代数ランク・ヌラリティ定理
2025/7/16

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ と $\mathbb{R}^m$ の基底 $\{b_1, \dots, b_m\}$ について、$f(a_i) = b_...

線形写像線形代数全射一次独立ベクトル空間
2025/7/16

与えられた関数 $y = \sqrt{x^4 + 2x^2 + 2}$ をできる限り簡単にします。

関数の簡素化平方根平方完成
2025/7/16

線形写像 $f: \mathbb{R}^3 \to \mathbb{R}^2$ が与えられています。$\mathbb{R}^3$ の基底 $\{\begin{bmatrix} 2 \\ 1 \\ 1 ...

線形写像表現行列基底変換線形代数
2025/7/16

与えられた行列 $A = \begin{pmatrix} 1 & 1 & 3 \\ -1 & 1 & -1 \\ 1 & 4 & 3 \end{pmatrix}$、ベクトル $\vec{x} = \b...

線形代数行列連立一次方程式掃き出し法逆行列
2025/7/16

与えられた6つの式を因数分解する問題です。 (1) $x^2+9xy+8y^2$ (2) $x^2-12xy+20y^2$ (3) $x^2+2xy-24y^2$ (4) $a^2+3ab-28b^2...

因数分解多項式
2025/7/16

与えられた6つの二次式を因数分解する問題です。

因数分解二次式
2025/7/16

与えられた一次関数のグラフを、定義域に基づいて描き、yの変域を求める問題です。全部で6問あります。

一次関数グラフ変域不等式
2025/7/16

## 1. 問題の内容

式の展開公式ベクトル積外積
2025/7/16