5個の青玉と4個の赤玉が入った袋から、同時に3個の玉を取り出すとき、少なくとも1個は赤玉を取り出す確率を求める。

確率論・統計学確率組み合わせ場合の数確率計算
2025/7/16

1. 問題の内容

5個の青玉と4個の赤玉が入った袋から、同時に3個の玉を取り出すとき、少なくとも1個は赤玉を取り出す確率を求める。

2. 解き方の手順

少なくとも1個赤玉を取り出す確率は、1から「3個とも青玉を取り出す確率」を引くことで求められる。
まず、袋に入っている玉の総数は 5+4=95 + 4 = 9 個である。
この中から3個の玉を取り出す組み合わせの総数は、
9C3=9!3!(93)!=9!3!6!=9×8×73×2×1=3×4×7=84_{9}C_{3} = \frac{9!}{3!(9-3)!} = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84 通り。
次に、3個とも青玉を取り出す組み合わせの数は、
5C3=5!3!(53)!=5!3!2!=5×42×1=10_{5}C_{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5 \times 4}{2 \times 1} = 10 通り。
したがって、3個とも青玉を取り出す確率は、
5C39C3=1084=542\frac{_{5}C_{3}}{_{9}C_{3}} = \frac{10}{84} = \frac{5}{42}
求める確率は、
1542=4242542=37421 - \frac{5}{42} = \frac{42}{42} - \frac{5}{42} = \frac{37}{42}

3. 最終的な答え

3742\frac{37}{42}

「確率論・統計学」の関連問題

人口100万人の都市で、1日平均1人の交通事故死亡事故が発生する。保険会社が、1日10円の保険料で、交通事故死の場合1000万円を支払う保険を提供した。全市民が加入した場合、会社が3日間で夜逃げしたと...

確率ポアソン分布統計期待値リスク
2025/7/17

1から5までの5つの数字をすべて使って5桁の整数を作るとき、偶数は全部で何個できるか。

順列組合せ場合の数整数
2025/7/17

10人のグループにおいて、任意の1人が男である確率が$\frac{1}{2}$であるとき、グループ内で男女が5人ずつになる確率を求める。

二項分布確率組み合わせ
2025/7/17

この問題は、さいころを複数個同時に投げたとき、出る目の積が6の倍数になる確率を求める問題です。 (1) 2個のさいころを投げた場合、 (2) 3個のさいころを投げた場合、 (3) n個のさいころを投げ...

確率確率分布事象さいころ場合の数
2025/7/17

与えられたデータから、母平均の推定を行う問題です。具体的には、(a)データの平均値を計算し、(b)母平均に関する信頼係数95%の信頼区間を求めます。母分散は既知であると仮定します。

統計的推定母平均信頼区間平均値
2025/7/17

与えられたデータ(83, 84, 86, 95, 93, 96, 86, 91, 87, 90, 101, 76, 104, 90, 85)から、母平均μに対する信頼係数95%の信頼区間を求める。ただ...

信頼区間母平均標本平均標本標準偏差統計的推定
2025/7/17

母平均が未知、母分散が既知の正規母集団から無作為抽出された標本 $\{83, 84, 86, 95, 93, 96, 86, 91, 87, 90, 101, 76, 104, 90, 85\}$ が...

統計的推定標本平均母集団正規分布
2025/7/17

母平均 $\mu$、母分散 $\sigma^2$ である母集団からの無作為標本 $X_1, X_2, ..., X_n$ が与えられたとき、標本平均 $\bar{X} = \frac{1}{n} \s...

標本平均期待値分散統計的推測
2025/7/17

確率密度関数 $f(x)$ が与えられている。ただし、 $f(x) = \begin{cases} cx & (0 \le x \le 1) \\ 0 & (\text{それ以外}) \end{cas...

確率密度関数分布関数期待値分散二項分布ポアソン分布
2025/7/17

ベルヌーイ母集団からのサイズ3の標本変量 $X_1, X_2, X_3$ について、3つの統計量 $T_1 = X_1$, $T_2 = \frac{X_1+X_2}{2}$, $T_3 = \fra...

ベルヌーイ分布標本期待値分散統計量
2025/7/17