12本のくじの中に4本の当たりくじがある。Aがくじを引き、引いたくじを元に戻した後、Bがくじを引く。このとき、Aだけが当たる確率を求める。

確率論・統計学確率独立事象くじ引き
2025/7/16

1. 問題の内容

12本のくじの中に4本の当たりくじがある。Aがくじを引き、引いたくじを元に戻した後、Bがくじを引く。このとき、Aだけが当たる確率を求める。

2. 解き方の手順

Aだけが当たる確率を求めるためには、以下の2つの事象が同時に起こる確率を計算する必要があります。
* Aが当たる。
* Bが外れる。
まず、Aが当たる確率を計算します。12本のくじのうち当たりくじは4本なので、Aが当たる確率は、
412=13\frac{4}{12} = \frac{1}{3}
次に、Bが外れる確率を計算します。Aが引いたくじは元に戻されるので、Bがくじを引く時にも12本のくじの中に4本の当たりくじがあります。したがって、Bが外れる確率(つまり、当たりくじを引かない確率)は、
12412=812=23\frac{12-4}{12} = \frac{8}{12} = \frac{2}{3}
Aだけが当たる確率は、Aが当たる確率とBが外れる確率を掛け合わせたものになります。
13×23=29\frac{1}{3} \times \frac{2}{3} = \frac{2}{9}

3. 最終的な答え

Aだけが当たる確率は 29\frac{2}{9} です。

「確率論・統計学」の関連問題

人口100万人の都市で、1日平均1人の交通事故死亡事故が発生する。保険会社が、1日10円の保険料で、交通事故死の場合1000万円を支払う保険を提供した。全市民が加入した場合、会社が3日間で夜逃げしたと...

確率ポアソン分布統計期待値リスク
2025/7/17

1から5までの5つの数字をすべて使って5桁の整数を作るとき、偶数は全部で何個できるか。

順列組合せ場合の数整数
2025/7/17

10人のグループにおいて、任意の1人が男である確率が$\frac{1}{2}$であるとき、グループ内で男女が5人ずつになる確率を求める。

二項分布確率組み合わせ
2025/7/17

この問題は、さいころを複数個同時に投げたとき、出る目の積が6の倍数になる確率を求める問題です。 (1) 2個のさいころを投げた場合、 (2) 3個のさいころを投げた場合、 (3) n個のさいころを投げ...

確率確率分布事象さいころ場合の数
2025/7/17

与えられたデータから、母平均の推定を行う問題です。具体的には、(a)データの平均値を計算し、(b)母平均に関する信頼係数95%の信頼区間を求めます。母分散は既知であると仮定します。

統計的推定母平均信頼区間平均値
2025/7/17

与えられたデータ(83, 84, 86, 95, 93, 96, 86, 91, 87, 90, 101, 76, 104, 90, 85)から、母平均μに対する信頼係数95%の信頼区間を求める。ただ...

信頼区間母平均標本平均標本標準偏差統計的推定
2025/7/17

母平均が未知、母分散が既知の正規母集団から無作為抽出された標本 $\{83, 84, 86, 95, 93, 96, 86, 91, 87, 90, 101, 76, 104, 90, 85\}$ が...

統計的推定標本平均母集団正規分布
2025/7/17

母平均 $\mu$、母分散 $\sigma^2$ である母集団からの無作為標本 $X_1, X_2, ..., X_n$ が与えられたとき、標本平均 $\bar{X} = \frac{1}{n} \s...

標本平均期待値分散統計的推測
2025/7/17

確率密度関数 $f(x)$ が与えられている。ただし、 $f(x) = \begin{cases} cx & (0 \le x \le 1) \\ 0 & (\text{それ以外}) \end{cas...

確率密度関数分布関数期待値分散二項分布ポアソン分布
2025/7/17

ベルヌーイ母集団からのサイズ3の標本変量 $X_1, X_2, X_3$ について、3つの統計量 $T_1 = X_1$, $T_2 = \frac{X_1+X_2}{2}$, $T_3 = \fra...

ベルヌーイ分布標本期待値分散統計量
2025/7/17