$\cos\theta = -\frac{\sqrt{10}}{6}$ のとき、$\cos 2\theta$ の値を求める問題です。

その他三角関数加法定理cos2θ
2025/7/16

1. 問題の内容

cosθ=106\cos\theta = -\frac{\sqrt{10}}{6} のとき、cos2θ\cos 2\theta の値を求める問題です。

2. 解き方の手順

cos2θ\cos 2\theta の公式の一つである cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1 を利用します。
cosθ=106\cos\theta = -\frac{\sqrt{10}}{6} をこの公式に代入して計算します。
cos2θ=2cos2θ1\cos 2\theta = 2 \cos^2 \theta - 1
=2(106)21= 2 \left(-\frac{\sqrt{10}}{6}\right)^2 - 1
=2(1036)1= 2 \left(\frac{10}{36}\right) - 1
=20361= \frac{20}{36} - 1
=591= \frac{5}{9} - 1
=5999= \frac{5}{9} - \frac{9}{9}
=49= -\frac{4}{9}

3. 最終的な答え

cos2θ=49\cos 2\theta = -\frac{4}{9}

「その他」の関連問題

(1) NaClの単位格子の一辺の長さを求める。ただし、Na+のイオン半径は97 pm、Cl-のイオン半径は181 pmとする。 (2) NaClの密度を求める。ただし、Na+のモル質量は23.0 g...

物理化学結晶構造密度アボガドロ定数単位格子
2025/7/21

6人の生徒が手をつないで1つの輪を作るとき、生徒の並び方の総数を求める問題です。

順列円順列組み合わせ
2025/7/20

全体集合 $U$ とその部分集合 $A$, $B$ があり、$n(U) = 30$, $n(A) = 18$, $n(B) = 21$ である。このとき、$n(A \cap B)$ の最大値と最小値を...

集合集合の要素数最大値最小値
2025/7/20

与えられた2つの命題の真偽を判定し、正しい組み合わせを選択する問題です。 命題(1)は「$n$が21の正の約数ならば、$n$は56の正の約数である」。 命題(2)は「$|x-1|>5$ならば、$|x|...

命題真偽判定論理絶対値約数
2025/7/20

$3.75^n$ の整数部分が3桁であるような整数 $n$ の個数を求める問題です。ただし、$\log_{10} 2 = 0.3010$、$\log_{10} 3 = 0.4771$ とします。

対数指数不等式常用対数桁数
2025/7/20

$M = \sqrt[3]{9}$ とするとき、以下の問いに答えます。 (1) $\log_{10}M$ の値を、小数第5位を四捨五入して小数第4位まで求めます。 (2) $M$ の近似値を小数第2位...

対数指数常用対数近似値数値計算
2025/7/19

常用対数表を使わずに、$\log_{10}2$の値について考察する問題です。 (1) $2^{10} > 10^3$を利用して、$\frac{3}{10} < \log_{10}2$を証明します。 (...

対数不等式常用対数対数の性質数値評価
2025/7/19

問題は、与えられた命題について、その対偶を述べ、元の命題と対偶の真偽を調べることです。 (1) $n$ は3の倍数 $\Rightarrow$ $n$ は9の倍数 (2) $mn$ は奇数 $\Rig...

命題対偶真偽倍数整数
2025/7/19

問題は、与えられた条件の否定を求める問題です。 (1) $a = 1$ かつ $b = -1$ (2) $m, n$ の少なくとも一方は偶数である。

論理否定命題
2025/7/19

与えられた3つの命題の真偽を判定する問題です。 (1) 自然数13は素数である。 (2) $3^2 < 9$ (3) 正方形は台形である。

命題真偽判定素数不等式幾何
2025/7/19