$\theta = \frac{8}{3}\pi$ のとき、$\sin\theta$, $\cos\theta$, $\tan\theta$ の値を求める問題です。幾何学三角関数角度sincostanラジアン2025/4/31. 問題の内容θ=83π\theta = \frac{8}{3}\piθ=38π のとき、sinθ\sin\thetasinθ, cosθ\cos\thetacosθ, tanθ\tan\thetatanθ の値を求める問題です。2. 解き方の手順まず、θ\thetaθ がどの象限にあるかを確認します。83π=2π+23π\frac{8}{3}\pi = 2\pi + \frac{2}{3}\pi38π=2π+32π なので、83π\frac{8}{3}\pi38π は 2π2\pi2π だけ回転して、さらに 23π\frac{2}{3}\pi32π 回転した角度になります。23π\frac{2}{3}\pi32π は第2象限の角です。次に、sinθ\sin\thetasinθ, cosθ\cos\thetacosθ, tanθ\tan\thetatanθ の値を求めます。sin(83π)=sin(2π+23π)=sin(23π)=sin(π−π3)=sin(π3)=32\sin(\frac{8}{3}\pi) = \sin(2\pi + \frac{2}{3}\pi) = \sin(\frac{2}{3}\pi) = \sin(\pi - \frac{\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}sin(38π)=sin(2π+32π)=sin(32π)=sin(π−3π)=sin(3π)=23cos(83π)=cos(2π+23π)=cos(23π)=cos(π−π3)=−cos(π3)=−12\cos(\frac{8}{3}\pi) = \cos(2\pi + \frac{2}{3}\pi) = \cos(\frac{2}{3}\pi) = \cos(\pi - \frac{\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}cos(38π)=cos(2π+32π)=cos(32π)=cos(π−3π)=−cos(3π)=−21tan(83π)=tan(2π+23π)=tan(23π)=sin(23π)cos(23π)=32−12=−3\tan(\frac{8}{3}\pi) = \tan(2\pi + \frac{2}{3}\pi) = \tan(\frac{2}{3}\pi) = \frac{\sin(\frac{2}{3}\pi)}{\cos(\frac{2}{3}\pi)} = \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = -\sqrt{3}tan(38π)=tan(2π+32π)=tan(32π)=cos(32π)sin(32π)=−2123=−33. 最終的な答えsinθ=32\sin\theta = \frac{\sqrt{3}}{2}sinθ=23cosθ=−12\cos\theta = -\frac{1}{2}cosθ=−21tanθ=−3\tan\theta = -\sqrt{3}tanθ=−3