$(x+4)^4$ の展開式における $x^3$ の係数を求める問題です。選択肢の中から正しい答えを選びます。もし選択肢に正しい答えがない場合は、選択肢5を選びます。

代数学二項定理展開係数
2025/7/17

1. 問題の内容

(x+4)4(x+4)^4 の展開式における x3x^3 の係数を求める問題です。選択肢の中から正しい答えを選びます。もし選択肢に正しい答えがない場合は、選択肢5を選びます。

2. 解き方の手順

二項定理を用いて (x+4)4(x+4)^4 の展開式を考えます。二項定理によれば、
(a+b)n=k=0n(nk)ankbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k
です。
この問題の場合、a=xa = x, b=4b = 4, n=4n = 4 です。x3x^3 の係数を求めたいので、xnk=x3x^{n-k}=x^3 となる kk を探します。つまり、4k=34-k=3 より、k=1k=1 となります。
したがって、x3x^3 の項は、
(41)x4141=(41)x34=4x34=16x3\binom{4}{1} x^{4-1} 4^1 = \binom{4}{1} x^3 \cdot 4 = 4 \cdot x^3 \cdot 4 = 16x^3
となります。
よって、x3x^3 の係数は 1616 です。

3. 最終的な答え

16
選択肢1が正解です。

「代数学」の関連問題

与えられた式を計算して、できる限り簡略化してください。 式は次のとおりです。 $\frac{3x-7y}{4} - \frac{2x-5y}{6} - 3 \times \frac{x-4y}{8}$

式の計算分数代数式
2025/7/17

1個150円のプリンと1個190円のゼリーを合わせて12個買ったところ、代金の合計が2000円であった。プリンとゼリーをそれぞれ何個買ったかを求める。

連立方程式文章題一次方程式
2025/7/17

与えられた3つの行列の固有値をそれぞれ求めます。 (1) $\begin{bmatrix} a & -b \\ -b & a \end{bmatrix}$ (2) $\begin{bmatrix} 2...

線形代数固有値行列
2025/7/17

与えられた式を計算して、できるだけ簡略化された形にしてください。 与えられた式は $ \frac{2x-3}{2} - \frac{x-2}{4} $ です。

分数式式の簡略化代数
2025/7/17

与えられた式 $\frac{2a+b}{3} - \frac{a-b}{4}$ を計算し、簡単にしてください。

式の計算分数代数
2025/7/17

$a$ を正の数とします。$xy$ 平面において、点 $A(a, 0)$ をとり、$C_1$ を双曲線 $x^2 - 4y^2 = -4$ とし、$C_2$ を双曲線 $x^2 - 4y^2 = 4$...

双曲線距離最小値平方完成不等式
2025/7/17

行列 $A = \begin{pmatrix} 3 & 0 \\ 2 & -1 \end{pmatrix}$ および $B = \begin{pmatrix} 3 & -1 \\ -1 & 2 \en...

行列逆行列線形代数連立方程式
2025/7/17

不等式 $(x+y)(x-y+1) < 0$ の表す領域を図示する問題です。

不等式領域グラフ線形不等式
2025/7/17

不等式 $2 < x \le \frac{a-5}{2}$ を満たす整数 $x$ がちょうど5個存在するとき、定数 $a$ の値の範囲を求めよ。

不等式整数解定数の範囲
2025/7/17

与えられた2つの式の分母を有理化する問題です。 (1) $\frac{1}{1-\sqrt{2}+\sqrt{3}}$ (2) $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}...

有理化根号式の計算
2025/7/17