与えられた連立方程式 $ \begin{cases} 3x + 2y = 21 \\ x + y = 8 \end{cases} $ の解 $x$ と $y$ を求める問題です。

代数学連立方程式加減法代入法
2025/7/17

1. 問題の内容

与えられた連立方程式
\begin{cases}
3x + 2y = 21 \\
x + y = 8
\end{cases}
の解 xxyy を求める問題です。

2. 解き方の手順

連立方程式を解くために、加減法または代入法を用います。ここでは加減法を用いることにします。
まず、2番目の式を3倍します。
3(x+y)=3(8)3(x + y) = 3(8)
3x+3y=243x + 3y = 24
次に、この新しい式から1番目の式を引きます。
(3x+3y)(3x+2y)=2421(3x + 3y) - (3x + 2y) = 24 - 21
3x+3y3x2y=33x + 3y - 3x - 2y = 3
y=3y = 3
yy の値を2番目の式に代入して xx を求めます。
x+3=8x + 3 = 8
x=83x = 8 - 3
x=5x = 5

3. 最終的な答え

x=5x = 5, y=3y = 3

「代数学」の関連問題

$x$ についての不等式 $2x + a > 4 - x$ が与えられている。 (1) この不等式の解が $x > 2$ であるとき、$a$ の値を求める。 (2) この不等式の解が $x = -3$...

不等式一次不等式解の範囲文字を含む不等式
2025/7/17

与えられた8個の2次方程式を解く問題です。

二次方程式平方根解の公式因数分解
2025/7/17

問題は、条件 $p$ が条件 $q$ であるための必要条件、十分条件、必要十分条件、または必要条件でも十分条件でもないかを判断する問題です。 問題文の選択肢は以下の通りです。 ア: 必要条件であるが十...

命題必要条件十分条件必要十分条件絶対値二次方程式
2025/7/17

ある商品Aの売り上げ高を最大にするための売り値を求める問題です。売り値を60円からx円値上げしたときの1日の売り上げ高をy円とすると、yをxの関数で表し、その最大値を求めることで、売り上げ高が最大とな...

二次関数最大値応用問題最適化
2025/7/17

問題は3つのパートに分かれています。 (1) 連立不等式の解を求める問題。 (2) 2つの整数 $a$, $b$ について、それぞれを11で割った余りが与えられたとき、$a+b$ と $ab$ を11...

連立不等式整数の性質標準偏差三角比2次関数平方完成最大値因数分解二次方程式
2025/7/17

$a > 0$ とする。2次関数 $y = x^2 - 2ax + 1$ ($0 \le x \le 4$)について、最小値 $m$ と最大値 $M$ をそれぞれ求めよ。

二次関数最大値最小値場合分け平方完成
2025/7/17

ある商品Aの売り上げを最大にするための価格設定を求める問題です。 初期価格が60円で、その時の販売個数は400個です。価格を1円上げるごとに販売個数が5個ずつ減少し、売り上げ高が最大となる価格を求めま...

二次関数最大値価格設定最適化
2025/7/17

$(\sqrt{5} + 2)(\sqrt{5} - 2)$ を計算しなさい。

平方根因数分解式の計算
2025/7/17

問題は、2x3行列Aの列ベクトル表示を($a_1$, $a_2$, $a_3$)とするとき、以下の問いに答えるものです。 (1) $A \begin{pmatrix} -1 \\ 2 \\ -3 \e...

線形代数行列ベクトル線形結合
2025/7/17

与えられた連立1次方程式 $\begin{cases} x + 3y - 4z = -4 \\ 4x + 12y - z = 14 \\ 7x + 21y - 9z = 10 \end{cases}$...

線形代数連立一次方程式行列階数
2025/7/17