定積分 $\int_{-1}^{1} x^4 dx$ を計算する問題です。

解析学定積分積分多項式関数
2025/7/18

1. 問題の内容

定積分 11x4dx\int_{-1}^{1} x^4 dx を計算する問題です。

2. 解き方の手順

まず、x4x^4 の不定積分を求めます。
x4x^4 の不定積分は x55\frac{x^5}{5} です。
次に、定積分の定義に従い、不定積分に積分区間の上限と下限を代入して引き算します。
11x4dx=[x55]11=155(1)55=15(15)=15+15=25\int_{-1}^{1} x^4 dx = \left[ \frac{x^5}{5} \right]_{-1}^{1} = \frac{1^5}{5} - \frac{(-1)^5}{5} = \frac{1}{5} - \left( -\frac{1}{5} \right) = \frac{1}{5} + \frac{1}{5} = \frac{2}{5}

3. 最終的な答え

2/5

「解析学」の関連問題

曲線 $y = \cos 2x$ $(0 < x < \frac{\pi}{2})$ 上の点 $P(t, \cos 2t)$ における法線について、その $y$ 切片を $f(t)$ とするとき、$f...

微分接線法線極限三角関数
2025/7/23

関数 $f(x) = \frac{1}{1+x^2}$ をマクローリン展開せよ。

マクローリン展開関数級数収束
2025/7/23

関数 $f(x) = \frac{1}{1+x^2}$ をマクローリン展開せよ。

マクローリン展開関数級数収束
2025/7/23

$f(x)=x^2$ としたとき、以下の関数の導関数 $y'$ を求める問題です。 (1) $y = \sin^2 x$ (2) $y = 2^x$ (3) $y = e^x$

導関数微分合成関数の微分指数関数三角関数
2025/7/23

与えられた積分問題を解きます。ここでは、(2) $\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx$ と (3) $\int \tan^n x \, dx$ (nは...

積分置換積分部分分数分解三角関数
2025/7/23

与えられた2つの不定積分を計算します。 (1) $\int \frac{x+1}{2x^2 - x - 1} dx$ (2) $\int \frac{x-1}{x^2 + x + 3} dx$

積分不定積分部分分数分解積分計算
2025/7/23

$\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx$ を計算せよ。

積分置換積分部分分数分解不定積分
2025/7/23

曲線 $y = \frac{\log x}{x}$ ($x>0$) に接し、原点を通る直線の方程式を求める問題です。

微分接線対数関数
2025/7/23

与えられた2つの関数について、連続性を調べる問題です。 (1) $f(x, y) = \frac{x^3 - y^2}{2x - y}$ (2) $f(x, y) = \frac{xy^2}{x^2 ...

多変数関数連続性極限極座標変換
2025/7/23

与えられた関数の導関数を求める問題です。 (1) $x^{\sin x}$ ($x > 0$) (2) $\log(\sqrt{x-2} + \sqrt{x-3})$

微分導関数対数微分法合成関数の微分
2025/7/23