2変数関数 $f(x, y) = xe^{-xy}$ について、$\frac{\partial^2 f}{\partial x^2}$ を求めよ。解析学偏微分多変数関数偏微分方程式2025/7/181. 問題の内容2変数関数 f(x,y)=xe−xyf(x, y) = xe^{-xy}f(x,y)=xe−xy について、∂2f∂x2\frac{\partial^2 f}{\partial x^2}∂x2∂2f を求めよ。2. 解き方の手順まず、f(x,y)f(x, y)f(x,y) を xxx で偏微分して ∂f∂x\frac{\partial f}{\partial x}∂x∂f を求めます。次に、∂f∂x\frac{\partial f}{\partial x}∂x∂f を再び xxx で偏微分して ∂2f∂x2\frac{\partial^2 f}{\partial x^2}∂x2∂2f を求めます。f(x,y)=xe−xyf(x, y) = xe^{-xy}f(x,y)=xe−xy∂f∂x=∂∂x(xe−xy)\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(xe^{-xy})∂x∂f=∂x∂(xe−xy)積の微分公式を使うと:∂f∂x=e−xy+x(−y)e−xy=e−xy−xye−xy=(1−xy)e−xy\frac{\partial f}{\partial x} = e^{-xy} + x(-y)e^{-xy} = e^{-xy} - xye^{-xy} = (1 - xy)e^{-xy}∂x∂f=e−xy+x(−y)e−xy=e−xy−xye−xy=(1−xy)e−xy次に、∂f∂x\frac{\partial f}{\partial x}∂x∂f を再び xxx で偏微分します。∂2f∂x2=∂∂x((1−xy)e−xy)\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x}((1 - xy)e^{-xy})∂x2∂2f=∂x∂((1−xy)e−xy)再び積の微分公式を使うと:∂2f∂x2=−ye−xy+(1−xy)(−y)e−xy=−ye−xy−ye−xy+xy2e−xy=−2ye−xy+xy2e−xy\frac{\partial^2 f}{\partial x^2} = -ye^{-xy} + (1 - xy)(-y)e^{-xy} = -ye^{-xy} - ye^{-xy} + xy^2e^{-xy} = -2ye^{-xy} + xy^2e^{-xy}∂x2∂2f=−ye−xy+(1−xy)(−y)e−xy=−ye−xy−ye−xy+xy2e−xy=−2ye−xy+xy2e−xyしたがって、∂2f∂x2=(xy2−2y)e−xy\frac{\partial^2 f}{\partial x^2} = (xy^2 - 2y)e^{-xy}∂x2∂2f=(xy2−2y)e−xy3. 最終的な答え(xy2−2y)e−xy(xy^2 - 2y)e^{-xy}(xy2−2y)e−xy