漸化式を利用して、不定積分 $\int \frac{dx}{(x^2+1)^2}$ を求めよ。解析学積分不定積分漸化式部分積分arctan計算2025/7/181. 問題の内容漸化式を利用して、不定積分 ∫dx(x2+1)2\int \frac{dx}{(x^2+1)^2}∫(x2+1)2dx を求めよ。2. 解き方の手順まず、In=∫dx(x2+1)nI_n = \int \frac{dx}{(x^2+1)^n}In=∫(x2+1)ndx と定義する。部分積分を用いてInI_nIn の漸化式を導く。In=∫1(x2+1)ndx=∫x2+1(x2+1)ndx−∫x2(x2+1)ndx=In−1−∫x⋅x(x2+1)ndxI_n = \int \frac{1}{(x^2+1)^n} dx = \int \frac{x^2+1}{(x^2+1)^n} dx - \int \frac{x^2}{(x^2+1)^n} dx = I_{n-1} - \int x \cdot \frac{x}{(x^2+1)^n} dxIn=∫(x2+1)n1dx=∫(x2+1)nx2+1dx−∫(x2+1)nx2dx=In−1−∫x⋅(x2+1)nxdx∫x⋅x(x2+1)ndx\int x \cdot \frac{x}{(x^2+1)^n} dx∫x⋅(x2+1)nxdx を部分積分する。u=xu=xu=x, dv=x(x2+1)ndxdv = \frac{x}{(x^2+1)^n}dxdv=(x2+1)nxdx とすると, du=dxdu = dxdu=dx, v=∫x(x2+1)ndx=12∫2x(x2+1)ndx=12(x2+1)−n+1−n+1=12(1−n)(x2+1)n−1v = \int \frac{x}{(x^2+1)^n}dx = \frac{1}{2} \int \frac{2x}{(x^2+1)^n}dx = \frac{1}{2} \frac{(x^2+1)^{-n+1}}{-n+1} = \frac{1}{2(1-n)(x^2+1)^{n-1}}v=∫(x2+1)nxdx=21∫(x2+1)n2xdx=21−n+1(x2+1)−n+1=2(1−n)(x2+1)n−11従って、∫x⋅x(x2+1)ndx=x⋅12(1−n)(x2+1)n−1−∫12(1−n)(x2+1)n−1dx=x2(1−n)(x2+1)n−1−12(1−n)∫1(x2+1)n−1dx=x2(1−n)(x2+1)n−1−12(1−n)In−1\int x \cdot \frac{x}{(x^2+1)^n} dx = x \cdot \frac{1}{2(1-n)(x^2+1)^{n-1}} - \int \frac{1}{2(1-n)(x^2+1)^{n-1}} dx = \frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)} \int \frac{1}{(x^2+1)^{n-1}}dx = \frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)}I_{n-1}∫x⋅(x2+1)nxdx=x⋅2(1−n)(x2+1)n−11−∫2(1−n)(x2+1)n−11dx=2(1−n)(x2+1)n−1x−2(1−n)1∫(x2+1)n−11dx=2(1−n)(x2+1)n−1x−2(1−n)1In−1したがって、In=In−1−[x2(1−n)(x2+1)n−1−12(1−n)In−1]=In−1−x2(1−n)(x2+1)n−1+12(1−n)In−1I_n = I_{n-1} - \left[ \frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)}I_{n-1} \right] = I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} + \frac{1}{2(1-n)}I_{n-1}In=In−1−[2(1−n)(x2+1)n−1x−2(1−n)1In−1]=In−1−2(1−n)(x2+1)n−1x+2(1−n)1In−1In=2(1−n)+12(1−n)In−1−x2(1−n)(x2+1)n−1=3−2n2(1−n)In−1+x2(n−1)(x2+1)n−1I_n = \frac{2(1-n)+1}{2(1-n)} I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} = \frac{3-2n}{2(1-n)} I_{n-1} + \frac{x}{2(n-1)(x^2+1)^{n-1}}In=2(1−n)2(1−n)+1In−1−2(1−n)(x2+1)n−1x=2(1−n)3−2nIn−1+2(n−1)(x2+1)n−1xIn=2n−32n−2In−1+x2(n−1)(x2+1)n−1I_n = \frac{2n-3}{2n-2}I_{n-1} + \frac{x}{2(n-1)(x^2+1)^{n-1}}In=2n−22n−3In−1+2(n−1)(x2+1)n−1xn=2n=2n=2 のとき、I2=2(2)−32(2)−2I2−1+x2(2−1)(x2+1)2−1=12I1+x2(x2+1)I_2 = \frac{2(2)-3}{2(2)-2}I_{2-1} + \frac{x}{2(2-1)(x^2+1)^{2-1}} = \frac{1}{2}I_1 + \frac{x}{2(x^2+1)}I2=2(2)−22(2)−3I2−1+2(2−1)(x2+1)2−1x=21I1+2(x2+1)xI1=∫1x2+1dx=arctanx+CI_1 = \int \frac{1}{x^2+1} dx = \arctan x + CI1=∫x2+11dx=arctanx+C従って、I2=12arctanx+x2(x2+1)+CI_2 = \frac{1}{2} \arctan x + \frac{x}{2(x^2+1)} + CI2=21arctanx+2(x2+1)x+C3. 最終的な答え∫dx(x2+1)2=12arctanx+x2(x2+1)+C\int \frac{dx}{(x^2+1)^2} = \frac{1}{2} \arctan x + \frac{x}{2(x^2+1)} + C∫(x2+1)2dx=21arctanx+2(x2+1)x+C