側面積が等しい2つの円錐P, Qがあり、それぞれの母線の長さが6cm、8cmである。円錐Pの底面の半径の長さは円錐Qの底面の半径の長さの何倍か。

幾何学円錐側面積相似
2025/7/20

1. 問題の内容

側面積が等しい2つの円錐P, Qがあり、それぞれの母線の長さが6cm、8cmである。円錐Pの底面の半径の長さは円錐Qの底面の半径の長さの何倍か。

2. 解き方の手順

円錐Pの底面の半径を rPr_P、母線の長さを lPl_P とする。
円錐Qの底面の半径を rQr_Q、母線の長さを lQl_Q とする。
円錐の側面積は πrl \pi r l で与えられる。
問題文より、円錐PとQの側面積が等しいので、
πrPlP=πrQlQ\pi r_P l_P = \pi r_Q l_Q
rPlP=rQlQr_P l_P = r_Q l_Q
rP=rQlQlPr_P = r_Q \frac{l_Q}{l_P}
問題文より、lP=6,lQ=8l_P = 6, l_Q = 8 なので、
rP=rQ86r_P = r_Q \frac{8}{6}
rP=rQ43r_P = r_Q \frac{4}{3}
円錐Pの底面の半径は、円錐Qの底面の半径の 43\frac{4}{3} 倍である。

3. 最終的な答え

43\frac{4}{3}

「幾何学」の関連問題

ABを直径とする半円O上に点Cがあり、$CA=CB$ である。弧CB上に点Dがあり、$DA:DB=3:1$ である。線分CBとDAの交点をEとする。$CA=6cm$のとき、以下の問いに答える。 (1)...

相似面積体積三平方の定理円周角の定理
2025/7/20

正方形ABCDにおいて、Eは辺DCの中点、Fは線分EBの中点、Gは辺AD上の点で∠GAF=∠GFEを満たす。Hは線分EB上の点で、∠GHE=90°である。AB=4cmのとき、線分EFの長さと線分HFの...

正方形三平方の定理相似線分の長さ角度
2025/7/20

正方形ABCDがあり、Eは辺DCの中点、Fは線分EBの中点、Gは辺AD上の点で、$\angle GAF = \angle GFE$である。また、Hは線分EB上の点で、$\angle GHE = 90^...

幾何正方形三平方の定理相似線分の長さ
2025/7/20

正方形ABCDがあり、Eは辺DCの中点、Fは線分EBの中点、Gは辺AD上の点で∠GAF = ∠GFEである。Hは線分EB上の点で∠GHE = 90°である。AB = 4cmのとき、線分EFの長さと線分...

正方形ピタゴラスの定理相似線分の長さ図形
2025/7/20

正方形ABCDにおいて、辺DCの中点をE、線分EBの中点をFとする。辺AD上に点Gがあり、$\angle GAF = \angle GFE$ である。線分EB上に点Hがあり、$\angle GHE =...

正方形三平方の定理相似角度線分の長さ
2025/7/20

正方形ABCDにおいて、Eは辺DCの中点、Fは線分EBの中点、Gは辺AD上の点であり、$\angle GAF = \angle GFE$ である。また、Hは線分EB上の点で、$\angle GHE =...

正方形三平方の定理相似幾何的解法
2025/7/20

3つの三角形に関する問題です。 * \[5] 三角形ABCにおいて、$AB=4$, $A=75^\circ$, $B=60^\circ$のとき、$CA$と外接円の半径$R$を求めます。 ...

三角形正弦定理余弦定理面積外接円
2025/7/20

問題は三角比に関する4つの小問から構成されています。 [1] 直角三角形の図から、$\sin\theta$, $\cos\theta$, $\tan\theta$ の値を求める。 [2] $\cos\...

三角比三角関数sincostan直角三角形鈍角三平方の定理
2025/7/20

2直線 $y = -x + 6$ (①) と $y = 2x$ (②) がある。直線①と②の交点をA、直線①とx軸の交点をBとする。線分AB上に点Pをとり、Pを通りy軸に平行な直線と直線②、x軸との交...

座標平面直線三角形の面積連立方程式
2025/7/20

直角二等辺三角形ABCにおいて、点PはAからAC上を、点QはBからBC上を同じ速さで移動する。APQBの面積が40cm^2になるとき、点PがAから何cm動いたかを求める。ただし、AB=BC=12cmと...

幾何面積直角二等辺三角形台形二次方程式
2025/7/20