与えられた4つの二次方程式を$x$について解きます。 (1) $4x^2 + 2x = 0$ (4) $x^2 - 49 = 0$ (5) $x^2 + 8x + 12 = 0$ (6) $9x^2 + 12x + 4 = 0$

代数学二次方程式因数分解解法
2025/3/11

1. 問題の内容

与えられた4つの二次方程式をxxについて解きます。
(1) 4x2+2x=04x^2 + 2x = 0
(4) x249=0x^2 - 49 = 0
(5) x2+8x+12=0x^2 + 8x + 12 = 0
(6) 9x2+12x+4=09x^2 + 12x + 4 = 0

2. 解き方の手順

(1) 4x2+2x=04x^2 + 2x = 0
共通因数2x2xでくくります。
2x(2x+1)=02x(2x + 1) = 0
よって、2x=02x = 0 または 2x+1=02x + 1 = 0
x=0x = 0 または x=12x = -\frac{1}{2}
(4) x249=0x^2 - 49 = 0
x2=49x^2 = 49
x=±49x = \pm \sqrt{49}
x=±7x = \pm 7
(5) x2+8x+12=0x^2 + 8x + 12 = 0
因数分解します。
(x+2)(x+6)=0(x + 2)(x + 6) = 0
よって、x+2=0x + 2 = 0 または x+6=0x + 6 = 0
x=2x = -2 または x=6x = -6
(6) 9x2+12x+4=09x^2 + 12x + 4 = 0
因数分解します。
(3x+2)2=0(3x + 2)^2 = 0
3x+2=03x + 2 = 0
3x=23x = -2
x=23x = -\frac{2}{3}

3. 最終的な答え

(1) x=0,12x = 0, -\frac{1}{2}
(4) x=7,7x = 7, -7
(5) x=2,6x = -2, -6
(6) x=23x = -\frac{2}{3}

「代数学」の関連問題

問題は、式 $6 \cdot (3) \cdot (x-3y)^6$ を簡略化することです。

式の簡略化多項式代数式
2025/4/19

関数 $y = -\frac{12}{x}$ ($x < 0$) のグラフ上に2点A, Bがあり、それぞれのx座標は-2, -4です。点Cは直線l上にあり、x座標は点Bのx座標に等しく、y座標は点Bの...

関数一次関数反比例変化の割合グラフ座標平面直線の式
2025/4/19

関数 $y = -\frac{12}{x}$ について、$x$ の値が $-4$ から $-2$ まで増加するときの変化の割合を求める問題です。

関数変化の割合分数
2025/4/19

みかんが240個あり、4個入りの袋を $x$ 袋、6個入りの袋を $y$ 袋作った。6個入りの袋の数 $y$ は、4個入りの袋の数 $x$ の3倍より4袋少ない。このとき、$x$ と $y$ の関係式...

一次式方程式文章問題
2025/4/19

$(2x + 1)^7$ を二項定理を用いて展開します。

二項定理多項式の展開組み合わせ
2025/4/19

与えられた2つの2次関数 $f(x) = x^2 - 2x + 1$ と $g(x) = -x^2 + 2ax - 6a + 13$ があります。 (1) $0 \leq x \leq 3$ における...

二次関数最大値最小値不等式
2025/4/19

与えられた式 $\frac{2 \log 2}{2 \log 3}$ を簡略化して値を求める問題です。

対数底の変換公式計算
2025/4/19

問題は、$a(b - cx) = d(x - e)$ という方程式を $x$ について解くことです。

方程式一次方程式文字式の計算解の公式
2025/4/19

次の等式を満たす定数 $a$ と $b$ を求める問題です。 $\frac{x-1}{(x+2)(x+1)} = \frac{a}{x+2} + \frac{b}{x+1}$

部分分数分解連立方程式分数式
2025/4/19

与えられた式 $3x + y = xy + 1$ を $y$ について解きます。つまり、$y = f(x)$ の形に変形します。

方程式式の変形分数式
2025/4/19