$\int \sqrt{x} (\sqrt{x}+1)^2 dx$ を計算してください。解析学積分定積分多項式2025/7/211. 問題の内容∫x(x+1)2dx\int \sqrt{x} (\sqrt{x}+1)^2 dx∫x(x+1)2dx を計算してください。2. 解き方の手順まず、(x+1)2(\sqrt{x} + 1)^2(x+1)2を展開します。(x+1)2=(x)2+2x+1=x+2x+1(\sqrt{x} + 1)^2 = (\sqrt{x})^2 + 2\sqrt{x} + 1 = x + 2\sqrt{x} + 1(x+1)2=(x)2+2x+1=x+2x+1次に、被積分関数を計算します。x(x+1)2=x(x+2x+1)=xx+2x+x=x3/2+2x+x1/2\sqrt{x}(\sqrt{x}+1)^2 = \sqrt{x}(x + 2\sqrt{x} + 1) = x\sqrt{x} + 2x + \sqrt{x} = x^{3/2} + 2x + x^{1/2}x(x+1)2=x(x+2x+1)=xx+2x+x=x3/2+2x+x1/2積分を実行します。∫x(x+1)2dx=∫(x3/2+2x+x1/2)dx=∫x3/2dx+∫2xdx+∫x1/2dx\int \sqrt{x} (\sqrt{x}+1)^2 dx = \int (x^{3/2} + 2x + x^{1/2}) dx = \int x^{3/2} dx + \int 2x dx + \int x^{1/2} dx∫x(x+1)2dx=∫(x3/2+2x+x1/2)dx=∫x3/2dx+∫2xdx+∫x1/2dx各項を積分します。∫x3/2dx=x5/25/2=25x5/2\int x^{3/2} dx = \frac{x^{5/2}}{5/2} = \frac{2}{5} x^{5/2}∫x3/2dx=5/2x5/2=52x5/2∫2xdx=x2\int 2x dx = x^2∫2xdx=x2∫x1/2dx=x3/23/2=23x3/2\int x^{1/2} dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2}∫x1/2dx=3/2x3/2=32x3/2積分結果をまとめます。∫x(x+1)2dx=25x5/2+x2+23x3/2+C\int \sqrt{x} (\sqrt{x}+1)^2 dx = \frac{2}{5} x^{5/2} + x^2 + \frac{2}{3} x^{3/2} + C∫x(x+1)2dx=52x5/2+x2+32x3/2+C3. 最終的な答え25x5/2+x2+23x3/2+C\frac{2}{5} x^{5/2} + x^2 + \frac{2}{3} x^{3/2} + C52x5/2+x2+32x3/2+C