与えられた数の平方根を、できる限り簡単な形で表す問題です。算数平方根根号素因数分解計算2025/7/211. 問題の内容与えられた数の平方根を、できる限り簡単な形で表す問題です。2. 解き方の手順平方根の中身を素因数分解し、a2a^2a2 の形を見つけて、根号の外に出します。52=22⋅13=213\sqrt{52} = \sqrt{2^2 \cdot 13} = 2\sqrt{13}52=22⋅13=21354=32⋅6=36\sqrt{54} = \sqrt{3^2 \cdot 6} = 3\sqrt{6}54=32⋅6=3656=23⋅7=22⋅2⋅7=214\sqrt{56} = \sqrt{2^3 \cdot 7} = \sqrt{2^2 \cdot 2 \cdot 7} = 2\sqrt{14}56=23⋅7=22⋅2⋅7=21460=22⋅3⋅5=215\sqrt{60} = \sqrt{2^2 \cdot 3 \cdot 5} = 2\sqrt{15}60=22⋅3⋅5=21563=32⋅7=37\sqrt{63} = \sqrt{3^2 \cdot 7} = 3\sqrt{7}63=32⋅7=3768=22⋅17=217\sqrt{68} = \sqrt{2^2 \cdot 17} = 2\sqrt{17}68=22⋅17=21772=23⋅32=22⋅32⋅2=2⋅32=62\sqrt{72} = \sqrt{2^3 \cdot 3^2} = \sqrt{2^2 \cdot 3^2 \cdot 2} = 2 \cdot 3 \sqrt{2} = 6\sqrt{2}72=23⋅32=22⋅32⋅2=2⋅32=6276=22⋅19=219\sqrt{76} = \sqrt{2^2 \cdot 19} = 2\sqrt{19}76=22⋅19=21980=24⋅5=(22)2⋅5=225=45\sqrt{80} = \sqrt{2^4 \cdot 5} = \sqrt{(2^2)^2 \cdot 5} = 2^2 \sqrt{5} = 4\sqrt{5}80=24⋅5=(22)2⋅5=225=4584=22⋅3⋅7=221\sqrt{84} = \sqrt{2^2 \cdot 3 \cdot 7} = 2\sqrt{21}84=22⋅3⋅7=22188=23⋅11=22⋅2⋅11=222\sqrt{88} = \sqrt{2^3 \cdot 11} = \sqrt{2^2 \cdot 2 \cdot 11} = 2\sqrt{22}88=23⋅11=22⋅2⋅11=22290=2⋅32⋅5=310\sqrt{90} = \sqrt{2 \cdot 3^2 \cdot 5} = 3\sqrt{10}90=2⋅32⋅5=31092=22⋅23=223\sqrt{92} = \sqrt{2^2 \cdot 23} = 2\sqrt{23}92=22⋅23=22396=25⋅3=24⋅2⋅3=(22)2⋅6=46\sqrt{96} = \sqrt{2^5 \cdot 3} = \sqrt{2^4 \cdot 2 \cdot 3} = \sqrt{(2^2)^2 \cdot 6} = 4\sqrt{6}96=25⋅3=24⋅2⋅3=(22)2⋅6=4698=2⋅72=72\sqrt{98} = \sqrt{2 \cdot 7^2} = 7\sqrt{2}98=2⋅72=7299=32⋅11=311\sqrt{99} = \sqrt{3^2 \cdot 11} = 3\sqrt{11}99=32⋅11=311100=10\sqrt{100} = 10100=103. 最終的な答え52=213\sqrt{52} = 2\sqrt{13}52=21354=36\sqrt{54} = 3\sqrt{6}54=3656=214\sqrt{56} = 2\sqrt{14}56=21460=215\sqrt{60} = 2\sqrt{15}60=21563=37\sqrt{63} = 3\sqrt{7}63=3768=217\sqrt{68} = 2\sqrt{17}68=21772=62\sqrt{72} = 6\sqrt{2}72=6276=219\sqrt{76} = 2\sqrt{19}76=21980=45\sqrt{80} = 4\sqrt{5}80=4584=221\sqrt{84} = 2\sqrt{21}84=22188=222\sqrt{88} = 2\sqrt{22}88=22290=310\sqrt{90} = 3\sqrt{10}90=31092=223\sqrt{92} = 2\sqrt{23}92=22396=46\sqrt{96} = 4\sqrt{6}96=4698=72\sqrt{98} = 7\sqrt{2}98=7299=311\sqrt{99} = 3\sqrt{11}99=311100=10\sqrt{100} = 10100=10