与えられた分数式 $\frac{\sqrt{3}+2\sqrt{2}}{2\sqrt{3}-\sqrt{2}}$ を計算し、分母を有理化して簡略化する。

代数学分数式有理化平方根計算
2025/7/21

1. 問題の内容

与えられた分数式 3+22232\frac{\sqrt{3}+2\sqrt{2}}{2\sqrt{3}-\sqrt{2}} を計算し、分母を有理化して簡略化する。

2. 解き方の手順

まず、分母の有理化を行うために、分母の共役な複素数である 23+22\sqrt{3}+\sqrt{2} を分母と分子に掛けます。
3+22232=(3+22)(23+2)(232)(23+2)\frac{\sqrt{3}+2\sqrt{2}}{2\sqrt{3}-\sqrt{2}} = \frac{(\sqrt{3}+2\sqrt{2})(2\sqrt{3}+\sqrt{2})}{(2\sqrt{3}-\sqrt{2})(2\sqrt{3}+\sqrt{2})}
分子を展開します。
(3+22)(23+2)=323+32+2223+222=23+6+46+22=6+56+4=10+56(\sqrt{3}+2\sqrt{2})(2\sqrt{3}+\sqrt{2}) = \sqrt{3} \cdot 2\sqrt{3} + \sqrt{3} \cdot \sqrt{2} + 2\sqrt{2} \cdot 2\sqrt{3} + 2\sqrt{2} \cdot \sqrt{2} = 2 \cdot 3 + \sqrt{6} + 4\sqrt{6} + 2 \cdot 2 = 6 + 5\sqrt{6} + 4 = 10 + 5\sqrt{6}
分母を展開します。
(232)(23+2)=(23)2(2)2=432=122=10(2\sqrt{3}-\sqrt{2})(2\sqrt{3}+\sqrt{2}) = (2\sqrt{3})^2 - (\sqrt{2})^2 = 4 \cdot 3 - 2 = 12 - 2 = 10
したがって、
(3+22)(23+2)(232)(23+2)=10+5610=1010+5610=1+62\frac{(\sqrt{3}+2\sqrt{2})(2\sqrt{3}+\sqrt{2})}{(2\sqrt{3}-\sqrt{2})(2\sqrt{3}+\sqrt{2})} = \frac{10 + 5\sqrt{6}}{10} = \frac{10}{10} + \frac{5\sqrt{6}}{10} = 1 + \frac{\sqrt{6}}{2}

3. 最終的な答え

1+621 + \frac{\sqrt{6}}{2}

「代数学」の関連問題

$(2\sqrt{5} - \sqrt{7})^2$ を計算します。

平方根展開計算
2025/7/21

与えられた連立方程式を解く問題です。 問題1では代入法を用いて連立方程式を解きます。 問題2では括弧のある連立方程式を解きます。 問題3では図の規則性を見抜き、$a$と$b$の値を求めます。

連立方程式代入法方程式
2025/7/21

与えられた2点 $ (-1, -1) $ と $ (3, 2) $ を通る一次関数を求め、その関数で $ x = 0 $ の時の $ y $ の値を求める問題です。

一次関数連立方程式座標
2025/7/21

与えられた数式を、文字式の表し方にしたがって書き直す問題です。 (1) $a \times b \div 3$ (2) $(-2) \times (a+b)^2 \div 5$ (3) $(-3) \...

文字式式の計算分数式代入
2025/7/21

与えられた連立方程式を解いて、$x$と$y$の値を求めます。連立方程式は以下の通りです。 $ \begin{cases} x + y = 8 \\ \frac{x + 2y}{2} = x - 1 \...

連立方程式方程式代入法
2025/7/21

与えられた式 $(2\sqrt{3}+\sqrt{2})(\sqrt{3}-2\sqrt{2})$ を計算して、その結果を求める問題です。

式の計算根号展開同類項
2025/7/21

$x = -6$ のとき $y = 1$、$x = 3$ のとき $y = 7$ である一次関数を求める問題です。

一次関数連立方程式傾き切片
2025/7/21

与えられた数式を、文字式の表記ルールに従って書き換えます。除算(÷)を分数で表すなど、より一般的な数式表現に変換します。

数式表現分数代数
2025/7/21

2点$(-1, 2)$と$(2, 5)$を通る直線の式を求める。

一次関数直線の式傾き切片座標
2025/7/21

グラフの傾きが6で、点(1, -4)を通る直線の式を求めます。

一次関数直線の式傾き切片
2025/7/21