$\sum_{k=1}^{n} (6k^2 - 1)$ を求めよ。代数学シグマ数列級数2025/7/211. 問題の内容∑k=1n(6k2−1)\sum_{k=1}^{n} (6k^2 - 1)∑k=1n(6k2−1) を求めよ。2. 解き方の手順∑k=1n(6k2−1)\sum_{k=1}^{n} (6k^2 - 1)∑k=1n(6k2−1) を計算するために、シグマの性質を利用して、式を分割します。∑k=1n(6k2−1)=∑k=1n6k2−∑k=1n1\sum_{k=1}^{n} (6k^2 - 1) = \sum_{k=1}^{n} 6k^2 - \sum_{k=1}^{n} 1∑k=1n(6k2−1)=∑k=1n6k2−∑k=1n1次に、定数倍のシグマの性質を利用して、定数をシグマの外に出します。∑k=1n6k2−∑k=1n1=6∑k=1nk2−∑k=1n1\sum_{k=1}^{n} 6k^2 - \sum_{k=1}^{n} 1 = 6\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} 1∑k=1n6k2−∑k=1n1=6∑k=1nk2−∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) と ∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=n を用いて、6∑k=1nk2−∑k=1n1=6⋅n(n+1)(2n+1)6−n6\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} 1 = 6 \cdot \frac{n(n+1)(2n+1)}{6} - n6∑k=1nk2−∑k=1n1=6⋅6n(n+1)(2n+1)−n=n(n+1)(2n+1)−n= n(n+1)(2n+1) - n=n(n+1)(2n+1)−n=n(2n2+3n+1)−n= n(2n^2 + 3n + 1) - n=n(2n2+3n+1)−n=2n3+3n2+n−n= 2n^3 + 3n^2 + n - n=2n3+3n2+n−n=2n3+3n2= 2n^3 + 3n^2=2n3+3n2=n2(2n+3)= n^2(2n + 3)=n2(2n+3)3. 最終的な答えn2(2n+3)n^2(2n + 3)n2(2n+3)